Designing a comprehensive separated regulation mechanism of distribution companies considering short- and long-term asset management

Sayed Majid Miri Larimi1✉, Mahmoud-Reza Haghifam1, Mansoreh Zangiabadi2, Mohammad Hassan Bahmani1

1Tarbiat Modares University, Tehran, Iran
2Newcastle University, Newcastle, UK
✉E-mail: m.miri@modares.ac.ir

Abstract: The regulation of distribution system operator is changing from the traditional approach to performance-based regulation (PBR). In this study a novel PBR approach is proposed for the regulation of a distribution company with consideration for asset management time scopes. In this regard a comprehensive separated regulation mechanism is presented so that the total expenditure for asset management is categorised into two: capital expenditure (Capex) and operational expenditure (Opex). A separate Capex and Opex regulation is proposed for electric distribution company regulation. A new reward and penalty scheme is proposed to efficiently regulate the quality of the network at a desirable level. The proposed methods are applied on the Iranian electricity distribution company.

1 Introduction

Historically, distribution system operators (DSOs) have been regulated by two regulation methods namely ‘cost of service’ and ‘rate of return’. Under these methods the profit of DSOs was somehow dependent on their costs; they had very little incentive to improve their efficiency [1–3]. To provide an incentive for DSOs, performance-based regulations (PBR) are introduced to motivate the DSOs to improve their efficiency and decrease costs [4]. PBR is a tool in the regulatory scheme for providing incentives to a regulated operator to behave in such a way that public interest is promoted.

Although the proposed regulations motivate the DSOs to increase their efficiency and cut costs, they lack incentives for service quality and reliability [5]. Owing to the inherent weaknesses of the PBR, regulators employ various forms of RPS to ensure reliability. RPS induces the DSOs to provide reliable services through penalising poor performance and rewarding good performance [6].

A typical form of the penalty/reward scheme is shown in Fig. 1. As shown, the general form of RPS contains three zones: reward, dead and penalty zones. The dead area is where neither a penalty nor a reward is assessed. The penalty and reward areas are where the performance of a DSO is in poor and good levels, respectively.

The reason for using a dead zone is to dampen unintended penalties and rewards owing to stochastic variations in quality. The penalty and reward areas are where the performance of a DSO is in good and poor levels, respectively. As the reliability of service is worsened or improved the penalties or rewards increase respectively, and are capped where a certain value is reached [6, 7]. The reliability indices utilised in RPS work is based on system average measures of interruption, such as system average interruption duration index (SAIDI) and system average interruption frequency index (SAIFI) [8]. SAIDI is used in this paper as the reliability index.

Utilising a reliability index in RPS is proposed in [9–12]. In [13] an algorithm to obtain the parameters of RPS for each electric company by using data envelopment analysis (DEA) and fuzzy c-means (FCM) clustering is presented. A new method for designing RPS-based Yardstick theory is proposed in [14].

![Fig. 1: A general RPS](image1)

![Fig. 2: Separated regulation mechanism](image2)
Fig. 3 General framework of the proposed regulation method
On the other hand, the global trend today is a movement towards a more efficient electric distribution system and optimal utilisation of available resources, in which asset management plays a decisive role [15]. Asset management should contain strategic planning, maintenance, utilisation, and operation of a physical resource. The major challenge for a distribution company is to optimally manage its assets along with its objectives, considering that there is a battle between improving service reliability and controlling costs. Possible time scales of asset management are real time, short term, midterm and long term [16]. From a practical standpoint, there are inter-relationships between the aforementioned timescales, additionally it is known that the coordination of an asset management’s timescales plays a critical role in strategic decision making because of the actions occurring within each timescale interacts [17].

In all the regulation strategy, this coordination has not been considered. With regard to this issue, in this paper, as shown in Fig. 2, a comprehensive separated regulation mechanism is presented so that the total expenditure for asset management is categorised to capital expenditure (Capex) and operational expenditure (Opex). The separate Capex and Opex regulation is proposed for efficient electric distribution company regulation.

2 Proposed method

This paper considers short- and long-term asset management and a comprehensive separated regulation mechanism of a distribution company. The general framework of the proposed method is shown in Fig. 3. The main objective of this paper is to determine the optimal level of Opex and Capex as well as RPS parameters. In this regard, at first similar companies are clustered by fuzzy clustering method (FCM) based on factors that are outside the control of the companies into different groups. [13] The variables used for carrying out such classification are based on weather conditions and network conditions. These variables are maximum temperature (°C), minimum temperature (°C), precipitation (mm), average wind speed (knot) and number of days with thunder, density [number of customers per service area (C/km²)] and quantity of energy supplied (MWh).

Then the optimal level of Opex of the ith year is determined by the following equation:

\[
\text{Opex}_{\text{opt},i} = \text{Opex}_{i}^{\theta}
\]

where \(\text{Opex}_{\text{opt},i}\) and \(\text{Opex}_{i}^{\theta}\) are the optimal level of Opex, operational cost and efficiency score of ith DisCo, respectively. The efficiency score is computed by DEA by considering operational cost as the input and the energy, number of customers and peak load as the output of DEA [13]. Once the optimal Opex is determined the RPS parameter is calculated as the following.

\[\text{Centre of dead zone (CDZ)}: \text{this parameter is determined by the following equation:}\]

\[
\text{CDZ}_K = \text{Ave}_{K} \left(1 + \frac{\text{RI}_{\text{max}} \left(\theta_{\text{max},j} - \theta_{\text{min},j}^\text{cdf} \right)}{\theta_{\text{max},j}^\text{cdf} - \theta_{\text{min},j}^\text{cdf}}\right)
\]

where \(j\) denotes the cluster of the company, \(\text{Ave}_{K}\) is the historical average reliability index of company \(K\), \(\text{RI}_{\text{max}}\) maximum reliability index improvement and \(\theta_{\text{min},j}^\text{cdf}\) is the efficiency score which is calculated considering customer damage cost as the input of the DEA method.

\[\text{Dead zone width}: \text{in this paper, it is determined to equal the average standard deviation (SD) of the historical reliability index for each cluster [18].}\]

\[\text{Max penalty and reward: these parameters are determined as proposed in [13].}\]

\[\text{Reward and penalty ramp: The main objective of this paper is to}\]

\[\text{improve the quality of companies with low-quality levels and prevent the deterioration of the level of quality. In this paper, the}\]

\[\text{reward and penalty ramp is determined by the following equation:}\]

\[\text{RS} = \frac{\partial \text{CIC}}{\partial \text{RI}}\]

where \(\text{CIC}\) is customer interruption cost and \(\text{RI}\) is the reliability index. The annual CIC can be estimated with the method proposed in [19].

\[\text{The optimal level of Capex is determined at the end of the regulatory period by the following equation:}\]

\[\text{Capex}_{\text{opt},i} = \text{Opex}_{i}^{\theta_{c,i}}\]

where \(\text{Capex}_{\text{opt},i}\), \(\text{Opex}_{i}^{\theta_{c,i}}\) are the optimal level of Capex, capital expenditure and efficiency score of ith DisCo, respectively. The efficiency score is computed by DEA by considering operational interruption cost, capital interruption cost and CIC at the regulatory period as the input and the energy, with the number of customers and peak load as the output of DEA [13].

3 Case study

The proposed method is tested on the Iranian distribution companies. There are 39 electricity distribution companies in Iran and the information on these companies is available at: www.tavanir.org. Other required information is taken from [13]. Due to the page constraint the regulatory period considered is 4 years and the results are determined for the first cluster of the result of [13]. The results of this paper are given in Table 1.

In this table, parameters of RPS and optimal level of Opex and Capex are given. The average SD for the considered cluster is

<table>
<thead>
<tr>
<th>Company</th>
<th>Optimal Opex, M$</th>
<th>Reward and penalty scheme</th>
<th>Optimal Capex, M$</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>CDZ, mm</td>
<td>SD, min</td>
<td>RS, M$/kM</td>
</tr>
<tr>
<td>A₁</td>
<td>11.24</td>
<td>342</td>
<td>158</td>
</tr>
<tr>
<td>A₂</td>
<td>16.32</td>
<td>364</td>
<td>158</td>
</tr>
<tr>
<td>A₃</td>
<td>10.54</td>
<td>215</td>
<td>158</td>
</tr>
<tr>
<td>A₄</td>
<td>15.63</td>
<td>589</td>
<td>158</td>
</tr>
<tr>
<td>A₅</td>
<td>42.80</td>
<td>2724</td>
<td>158</td>
</tr>
<tr>
<td>A₆</td>
<td>16.45</td>
<td>653</td>
<td>158</td>
</tr>
<tr>
<td>A₇</td>
<td>13.24</td>
<td>371</td>
<td>158</td>
</tr>
<tr>
<td>A₈</td>
<td>15.87</td>
<td>436</td>
<td>158</td>
</tr>
<tr>
<td>A₉</td>
<td>28.42</td>
<td>1734</td>
<td>158</td>
</tr>
<tr>
<td>A₁₀</td>
<td>12.22</td>
<td>501</td>
<td>158</td>
</tr>
<tr>
<td>A₁₁</td>
<td>11.23</td>
<td>396</td>
<td>158</td>
</tr>
<tr>
<td>A₁₂</td>
<td>9.62</td>
<td>842</td>
<td>158</td>
</tr>
<tr>
<td>A₁₃</td>
<td>15.26</td>
<td>1045</td>
<td>158</td>
</tr>
</tbody>
</table>
158 min and the width of the dead zone is equal to this value. Using the formula of (2) and (3) the CDZ and ramp of reward and penalty scheme is determined for each company respectively. Other parameters of RPS are determined based on [13]. The optimal level of Opex and Capex is calculated based on each distribution company efficiency score and the real cost.

4 Conclusion

To provide an incentive, PBR is introduced to motivate the DSOs to improve the quality and efficiency by increasing the reliability index and decreasing the operational and capital costs respectively. Distribution companies use different asset management strategies to achieve this objective. Due to the inter-relations between timescales of asset management, the integration of timescale impact on regulation strategy plays a critical role. With regard to this issue in this paper, the total cost of each company was categorised into the operational interruption cost, capital interruption cost and CIC. Then the DEA was implemented on the parameters of RPS are determined based on [13]. The optimal level of Opex and Capex is calculated based on each distribution company efficiency score and the real cost.

5 References