Sites of fractures in explanted NeuFlex metacarpophalangeal silicone prostheses

T J Joyce, G Giddins*

School of Engineering, Newcastle University, Stephenson Building, Claremont Road, Newcastle upon Tyne, NE1 7RU, UK

*Orthopaedic Department, Royal United Hospital, Bath, UK

Corresponding author: T J Joyce, School of Engineering, Newcastle University, Stephenson Building, Claremont Road, Newcastle upon Tyne, NE1 7RU, UK

Telephone: 0044 191 208 6214; Fax 0044 191 222 8600

Email Thomas.joyce@ncl.ac.uk; twitter handle @metalhip_ncl

Keywords: NeuFlex; Swanson; Sutter; silicone; retrieval analysis; fracture

Funding: The authors received no financial support for the research, authorship, and/or publication of this article.

The authors declared no potential conflicts of interest with respect to the research, authorship, and/or publication of this article.
Abstract

Single-piece silicone implants dominate metacarpophalangeal (MP) joint arthroplasty. The NeuFlex implant was introduced to improve on the clinical performance of other silicone implants by having a pre-flexed hinge. By visually examining a cohort of 30 explanted NeuFlex MP joint prostheses we sought to identify failure modes of these implants. Seven were not fractured, 11 had fractured across the hinge, nine had fractured at the junction of the distal stem and the hinge, and three showed fractures at both the hinge and at the junction of the distal stem and the hinge. This data may prove helpful with identifying how the performance of single-piece silicone implant designs can be improved.

Level IV
Single-piece silicone implants dominate finger arthroplasty of the metacarpophalangeal (MP) joint. The Swanson (Wright Medical, Memphis, USA) implant is the market leader (Norwegian_Arthroplasty_Register, 2016). Known ‘problems’ include fracture (Kimani et al., 2009), primarily at the junction of the distal stem and hinge (Joyce and Unsworth, 2002). This position of fracture is also seen with the Avanta/Sutter (Sutter Corporation/Avanta, San Diego, USA) single-piece silicone finger implant (Joyce et al., 2003). It is thought to be particularly related to the dominance of subluxing forces in the rheumatoid MP joint (Drayton et al., 2016; Joyce, 2009). In 1998 the pre-flexed NeuFlex implant was introduced. The three designs, Swanson, Sutter and NeuFlex, are shown in Fig 1.

It is recognised that fracture of silicone MP implants is common. Trail et al. reported that two-thirds of 1336 Swanson implants had fractured at 17 years follow-up (Trail et al., 2004). Goldfarb and Stern reported that 67% of their Swanson implants and 52% of their Sutter implants had fractured at 14 years follow-up (Goldfarb and Stern, 2003). A fractured implant does not necessarily mean a clinical failure but recurrent symptoms are more likely with fractured implants (Trail et al., 2004).

Clinically, it has been reported that the NeuFlex MP joint has produced an increased range of motion compared to use of the Swanson implant (Delaney et al., 2005). This finding was also reported by Escott et al, although their patients implanted with a Swanson implant had better self-reported function and aesthetics (Escott et al., 2010). While Namdari and Weiss reported 1/29 fractures in their cohort of NeuFlex implants (Namdari and Weiss, 2009), similar fracture rates between the NeuFlex and Swanson designs have been reported (Kimani et al., 2009). When NeuFlex and Sutter implants were compared in the MP joint, two out of 78 NeuFlex and five out of 78 Sutter implants broke (Pettersson et al., 2006).
The aim of this study was to assess the failure of explanted NeuFlex implants and compare the results with established patterns for other one-piece silicone implants.

METHODS AND MATERIALS

NeuFlex MP joint explants were gathered as part of an ongoing retrieval programme. Following removal the implants were cleaned with a brief immersion in Chlorhexidine for 30 mins and then washed in tap water. The explants were photographed using a digital camera. The position of fracture, if any, was noted. We recorded patient demographics including the patient age, gender, underlying diagnosis, site of surgery and time in situ. The implants were part of a consecutive series of explants for which patient demographic data were available.

Based on the explant results (q.v.), we compared the thickness of the central hinge section of NeuFlex and Sutter/Avanta implants as a thinner section would probably fail quicker, as crack growth resistance is probably key to the longevity of these single-piece, silicone prostheses (ASTM-F1781-15, 2015; Hutchinson et al., 1997). Size 20 and size 40 implants of the NeuFlex and Sutter/Avanta were measured using a Vernier calliper (Mitutoyo, Huddersfield, UK).

RESULTS

Thirty NeuFlex MP joint explants were available for study. The position of the complete implant fracture, if any, is shown in table 1, alongside patient and other information. All revision procedures were undertaken for clinical problems i.e. symptomatic joint replacement failure requiring revision surgery after failure of non-operative treatment.

Seven explants were not fractured (Fig 2A). Eleven explants had completely fractured at the hinge (Fig 2B). A further nine explants had completely fractured at the junction of the distal stem and hinge (Fig 2C). Three explants had completely fractured at both the hinge and at the distal stem (Fig 2D).
We saw a mix of fractured and intact implants in some patients, for example explants 8-11 came from the hand of one patient. One explant was intact, two had fractured at the distal stem and one had fractured at the hinge. Separate to this we saw an explant (no. 19) with an incomplete fracture.

NeuFlex MP explants ranged in size from 0 to 40. As might be expected, smaller sizes were retrieved from the smaller fingers of hands, while larger implants tended to come from the index and middle fingers. The age at revision ranged from 43 to 81 (median 58) years. The time in situ ranged from 6 to 120 (median 58.5) months. In all but two cases the diagnosis was rheumatoid arthritis.

Discolouration of some explants had occurred (Fig 3). The significance of this is unclear but it could represent some change in material properties of the implant.

The size 20 NeuFlex and Sutter/Avanta implants were each measured to have a hinge thickness of 1.9 mm and the size 40 implants were each measured to have a hinge thickness of 2.3 mm.

DISCUSSION

As shown in table 1, 11 NeuFlex explants had fractured across the hinge (Fig 2B); this has not previously been reported in vivo. Fracture at the hinge occurred when three NeuFlex implants were tested in vitro in a finger function simulator (Joyce and Unsworth, 2005). Nine NeuFlex explants had fractured at the junction of the distal stem and hinge (Fig 2C). This is similar to the site of implant fracture seen with Swanson implant fractures (Gellman et al., 1997; Trail et al., 2004) and Sutter/Avanta (Joyce et al., 2003) implant fractures. In vitro tests have shown that Swanson (Joyce and Unsworth, 2000) and Sutter (Joyce et al., 2003) implants fracture at the junction of the distal hinge and stem, in both cases matching clinical experience.

Intriguingly, 10% of the cohort fractured at the hinge and at the junction of the distal stem and hinge (Fig 2D). The authors are not aware of such a failure mode having been reported previously. That it happened in three explants, and that one of the un-fractured NeuFlex explants (no. 19) also showed substantial damage at both the hinge and the junction of the distal stem and hinge indicates that the
failure mode was not an anomaly; of greater note 11 (37%) fractured just at the hinge. Overall 14
(47%) suffered fractures of the implant hinge. Silicone implant hinge fractures have not previously
been reported. It is unclear whether this occurs before, after or separate to stem fractures.

The one incomplete fracture (no. 19) showed that fracture began dorsally. This matches with the
fracture initiation site of silicone MP joint implants seen previously (Joyce, 2009).

Discolouration of most explants occurred (Fig 3) likely indicating that the silicone material can change
when in the body. This may affect the material properties of the implants and could therefore be a
useful area for future research.

We appreciate that fractures would likely have occurred sometime before removal of the implants and
therefore time in situ does not equate with time to fracture.

Ex vivo analysis of finger implants potentially highlight key areas of failure, thus providing information
that could be used to reduce failures by improving future designs. For example, based on the
empirical evidence provided in this paper and by other previous publications (Drayton et al., 2016;
Joyce, 2009; Joyce et al., 2003), subluxing forces need to be minimised, to reduce the shear stresses
on the implant at both the junction of the distal stem and hinge and probably at the hinge. In addition,
consideration could be given to increasing the thickness of the hinge to reduce the time taken to
fracture, although there may be a concomitant increase in stiffness of the implant.

With improved designs, patients could achieve more with their replaced joints while increased
prosthesis longevity should lead to fewer revision operations. The latest Norwegian Arthroplasty
Register shows that revision MP joint arthroplasties accounted for 42% of all MP joint replacement
operations in 2015 (Norwegian_Arthroplasty_Register, 2016). Therefore revision MP joint arthroplasty
is common and opportunities to reduce such operations are substantial.

There are limitations on this research. There is no denominator to show the rate of implant failure.
The details of the original operations are unknown; there may have been factors leading to implant
failure. There is no correlation with the biomechanics of the failed joints.
This study provides new data on the failure of NeuFlex implants raising questions about their design and its possible link to mechanical failure.

CONFLICT OF INTERESTS

None declared

Funding

This research received no specific grant from any funding agency in the public, commercial, or not-for-profit sectors.
REFERENCES

Figure legends

Figure 1 – different designs of silicone single-piece finger implants. Top NeuFlex, middle Sutter/Avanta, bottom Swanson. In all cases the distal stem is to the right.

Figure 2 A (top left) – An un-fractured NeuFlex explant (explant 15); B (top right) – A NeuFlex explant (explant 28) showing fracture at the hinge; C (bottom left) – A NeuFlex explant (explant 24) showing fracture at the junction of the distal stem and hinge; D (bottom right) – A NeuFlex explant (explant 13) showing fracture at both the hinge and at the junction of the hinge and the distal stem

Figure 3 – Two NeuFlex explants (explant 18 above and explant 13 below) showing discolouration. Note that discolouration of explant 13 has occurred to the entire material and not just the outer surfaces.
<table>
<thead>
<tr>
<th>Explant</th>
<th>Finger</th>
<th>Explant Size</th>
<th>Patient age at revision (months)</th>
<th>Time in situ (months)</th>
<th>Diagnosis</th>
<th>Position of fracture</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Index</td>
<td>30</td>
<td>43</td>
<td>36</td>
<td>RA</td>
<td>Hinge and distal stem</td>
</tr>
<tr>
<td>2</td>
<td>Little</td>
<td>10</td>
<td>43</td>
<td>36</td>
<td>RA</td>
<td>Hinge</td>
</tr>
<tr>
<td>3</td>
<td>Middle</td>
<td>30</td>
<td>43</td>
<td>36</td>
<td>RA</td>
<td>Hinge</td>
</tr>
<tr>
<td>4</td>
<td>Index</td>
<td>40</td>
<td>58</td>
<td>63</td>
<td>RA</td>
<td>Distal stem</td>
</tr>
<tr>
<td>5</td>
<td>Middle</td>
<td>40</td>
<td>58</td>
<td>63</td>
<td>RA</td>
<td>Distal stem</td>
</tr>
<tr>
<td>6</td>
<td>Ring</td>
<td>30</td>
<td>58</td>
<td>63</td>
<td>RA</td>
<td>Distal stem</td>
</tr>
<tr>
<td>7</td>
<td>Little</td>
<td>20</td>
<td>58</td>
<td>63</td>
<td>RA</td>
<td>Distal stem</td>
</tr>
<tr>
<td>8</td>
<td>Index</td>
<td>30</td>
<td>78</td>
<td>54</td>
<td>RA</td>
<td>Distal stem</td>
</tr>
<tr>
<td>9</td>
<td>Middle</td>
<td>40</td>
<td>78</td>
<td>54</td>
<td>RA</td>
<td>Distal stem</td>
</tr>
<tr>
<td>10</td>
<td>Ring</td>
<td>20</td>
<td>78</td>
<td>54</td>
<td>RA</td>
<td>No fracture</td>
</tr>
<tr>
<td>11</td>
<td>Little</td>
<td>10</td>
<td>78</td>
<td>54</td>
<td>RA</td>
<td>Hinge</td>
</tr>
<tr>
<td>12</td>
<td>Ring</td>
<td>20</td>
<td>57</td>
<td>78</td>
<td>RA</td>
<td>Hinge and distal stem</td>
</tr>
<tr>
<td>13</td>
<td>Little</td>
<td>10</td>
<td>57</td>
<td>78</td>
<td>RA</td>
<td>Hinge and distal stem</td>
</tr>
<tr>
<td>14</td>
<td>Index</td>
<td>30</td>
<td>58</td>
<td>63</td>
<td>RA</td>
<td>No fracture</td>
</tr>
<tr>
<td>15</td>
<td>Ring</td>
<td>20</td>
<td>58</td>
<td>63</td>
<td>RA</td>
<td>No fracture</td>
</tr>
<tr>
<td>16</td>
<td>Little</td>
<td>20</td>
<td>58</td>
<td>63</td>
<td>RA</td>
<td>No fracture</td>
</tr>
<tr>
<td>17</td>
<td>Middle</td>
<td>40</td>
<td>58</td>
<td>63</td>
<td>RA</td>
<td>Hinge</td>
</tr>
<tr>
<td>18</td>
<td>Middle</td>
<td>40</td>
<td>84</td>
<td>18</td>
<td>OA</td>
<td>Distal stem</td>
</tr>
<tr>
<td>19</td>
<td>Index</td>
<td>40</td>
<td>84</td>
<td>18</td>
<td>OA</td>
<td>No fracture</td>
</tr>
<tr>
<td>20</td>
<td>Little</td>
<td>10</td>
<td>73</td>
<td>24</td>
<td>RA</td>
<td>No fracture</td>
</tr>
<tr>
<td>21</td>
<td>---</td>
<td>40</td>
<td>70</td>
<td>120</td>
<td>RA</td>
<td>Hinge</td>
</tr>
<tr>
<td></td>
<td>Joint</td>
<td>Age</td>
<td>Gender</td>
<td>RA</td>
<td>Type</td>
<td></td>
</tr>
<tr>
<td>---</td>
<td>-------</td>
<td>-----</td>
<td>--------</td>
<td>----</td>
<td>---------</td>
<td></td>
</tr>
<tr>
<td>22</td>
<td>Little</td>
<td>10</td>
<td>Male</td>
<td>RA</td>
<td>Hinge</td>
<td></td>
</tr>
<tr>
<td>23</td>
<td>Index</td>
<td>40</td>
<td>Female</td>
<td>RA</td>
<td>Distal stem</td>
<td></td>
</tr>
<tr>
<td>24</td>
<td>Middle</td>
<td>40</td>
<td>Female</td>
<td>RA</td>
<td>Distal stem</td>
<td></td>
</tr>
<tr>
<td>25</td>
<td>Little</td>
<td>20</td>
<td>Male</td>
<td>RA</td>
<td>No fracture</td>
<td></td>
</tr>
<tr>
<td>26</td>
<td>Index</td>
<td>30</td>
<td>Female</td>
<td>RA</td>
<td>Hinge</td>
<td></td>
</tr>
<tr>
<td>27</td>
<td>Middle</td>
<td>30</td>
<td>Female</td>
<td>RA</td>
<td>Hinge</td>
<td></td>
</tr>
<tr>
<td>28</td>
<td>Ring</td>
<td>20</td>
<td>Male</td>
<td>RA</td>
<td>Hinge</td>
<td></td>
</tr>
<tr>
<td>29</td>
<td>Little</td>
<td>0</td>
<td>Male</td>
<td>RA</td>
<td>Hinge</td>
<td></td>
</tr>
<tr>
<td>30</td>
<td>Index</td>
<td>30</td>
<td>Female</td>
<td>RA</td>
<td>Hinge</td>
<td></td>
</tr>
</tbody>
</table>

Table 1 – table of data regarding NeuFlex MP joint explants. RA = rheumatoid arthritis; OA = osteoarthritis.