Predictive validity of verbal and non-verbal communication and mother-child turn-taking at 12 months on language outcomes at 24 and 36 months in a cohort of infants experiencing adversity: A preliminary study

Abstract

Background: Parent-reported measures of early communication have limitations for use with infants experiencing adversity. Observational measures of early non-verbal and verbal communicative behaviours and mother-child turn-taking may provide a complementary method of capturing early communication skills for these children.

Aims: This study explored the predictive validity of verbal and non-verbal behaviours and mother-child conversational turn-taking (fluency and connectedness) at child age 12 months in relation to language measures at 24 and 36 months in a cohort of infants experiencing adversity.

Methods & Procedures: Pregnant women experiencing adversity were recruited from maternity hospitals in Australia. At 12 months, 190 infants were videoed during mother-child free-play. Verbal and non-verbal communicative behaviours and fluency and connectedness were measured from the 12-month videos. Predictive validity of 12-month behaviours was calculated in relation to mean length of utterance (MLU) and number of unique words at 24 months and Clinical Evaluation of Language Fundamentals Preschool Second Edition (CELF-P2) Core Language scores at 36 months.

Outcomes & Results: All 12-month behaviours had adequate specificity but poor sensitivity when compared to other predictive validity studies using published early language measures. However, in adjusted regression models, fluency and connectedness and verbal behaviours at 12 months predicted unique words at 24 months. Fluency and connectedness also predicted CELF-P2 scores at 36 months.
Conclusions & Implications: Findings reconfirm the difficulty in early identification of children at risk of later language difficulties. All 12-month measures were more accurate at identifying those children who will have better language than those children who will not. As fluency and connectedness was the only measure to predict 24- and 36-month language in adjusted regression models, it may be an important factor to consider when measuring early language skills for infants experiencing adversity. Future research could combine observational measures of early communication and fluency and connectedness with other predictors of language to try and increase prediction accuracy.

Key words: language development, screening, validity

What this paper adds?

What is already known?

Early identification of children at risk of poorer language is important for provision of timely intervention to optimise outcomes. Accurately measuring early communication is challenging, particularly for infants experiencing adversity.

What this paper adds?

This study evaluated the predictive validity of non-verbal and verbal communicative behaviours and fluency and connectedness of mother-child conversation in relation to later language skills in a cohort of infants experiencing adversity. Although predictive validity was poor across all measures, fluency and connectedness and verbal skills at 12 months were positively associated with later language.
Clinical implications:

Brief observational measures collected at 12-months were poor at identifying children with language difficulties at 24 and 36 months. However, accurate prediction of children with language difficulties could be increased by incorporating measures of early verbal skills and fluency and connectedness of adult-child conversation alongside other factors related to language development.
Predictive validity of 12-month behaviours

Introduction

Early identification of children at risk of lower language is important for provision of timely intervention to improve outcomes. Early detection may be particularly valuable for children at risk of lower language where modifiable environmental differences may play a role (over and above genetic or biological factors, such as child gender and family history of communication difficulties). If environmental differences contribute to poorer language, but are also mutable, there is an opportunity to modify a child’s language learning environment to optimise early language acquisition. Although there is language variability within cohorts, environmental risk factors for poorer language include lower socioeconomic status (SES) measures, such as reduced household income (Arriaga et al., 1998). Other environmental risk factors include teen parenthood, lone parenthood and parental mental health difficulties (Pan et al., 2005, Keown et al., 2001). For the purpose of the current study, the term adversity will be used to encompass the array of risk factors associated with poorer language.

Early communication, language and play

In infancy, meaningful language comprises non-verbal and verbal communication. Both types of communication rely on an underlying capacity to use conventional symbols to transmit messages to another person (Bates et al., 1979). Early intentional communication is typified by vocalisations (e.g. consistently using the same sound/s in routine situations to request) and gestures (e.g. pointing to or showing an adult an object). Developing communicative intent is important for meaningful language use as it signifies when a child becomes aware of their role as a communicator, able to send purposeful signals to a partner (Rowland and Fried-Oken, 2010). Although vocalisations are present from birth, first words and word approximations are expected around 12 months of age (Oller, 2000). Early gestures commence around ten months with holdouts and gives developing before declarative pointing...
Predictive validity of 12-month behaviours

(Cameron-Faulkner et al., 2015). At this stage of development, early play is also emerging. Although ages vary, simple pretend play (e.g. pretending to drink from a cup) begins around 12 months (Bates et al., 1979). As a child develops more spoken language, verbal communication begins to usurp non-verbal gestures and vocalisations but, between nine and 13 months, expansion of a child’s early communicative repertoire suggests children are adding to, rather than replacing, early communicative behaviours (Bates et al., 1979).

Measurement of early language

Unsurprisingly, frequency of vocalisations and early words has been positively related to later language skills (McCathren et al., 1999, Eadie et al., 2010). Early gesture and play skills have also been positively associated with later language (Bates et al., 1979, Eadie et al., 2010). Differences in early gesture have also helped explain SES disparities in vocabulary size when children entered school (Rowe and Goldin-Meadow, 2009). Despite identification of communicative behaviours associated with later language, accurately predicting child language trajectories remains problematic in infancy and toddlerhood, especially for children experiencing adversity (Feldman et al., 2005).

Due to fluctuations in early language trajectories, the best method for accurately capturing infant language and communication remains unclear (Feldman et al., 2005). However, two routinely used measures for assessing early language and communication within research studies are The MacArthur-Bates Communicative Development Inventories (MCDI; Fenson et al., 1994) and the Communication and Symbolic Behavior Scales Developmental Profile (CSBS DP; Wetherby and Prizant, 2001). The MCDI contains two checklists which require parents to report on their child’s understanding and use of vocabulary across semantic categories. The CSBS DP comprises a brief parent-reported checklist, a follow-up caregiver questionnaire (CQ) and a behaviour sample (BS) assessing
Predictive validity of 12-month behaviours

child skills using a standardised structure. The CSBS DP checklist, CQ and BS all measure seven prelinguistic aspects of development.

Predictive validity

The predictive validity of the CSBS DP and MCDI has been explored. Predictive validity is the extent to which an earlier test score predicts a later one. Predictive validity is defined by sensitivity (true positives) and specificity (true negatives). In the context of language assessment, sensitivity refers to the ability of a test to detect those children who have language difficulties; specificity refers to the ability of a test to detect those children who do not have language difficulties. Predictive validity also includes the negative predictive value (NPV; i.e. the probability that children with a negative screening test do not actually have language difficulties) and the positive predictive value (PPV; i.e. the probability that children with a positive screening test do have language difficulties). There are no concrete recommendations regarding adequate levels of sensitivity and specificity for language measures, but greater than .80 is deemed acceptable (Law et al., 2000).

[Table-1]

Table 1 presents the predictive validity of the MCDI and CSBS DP. Only studies reporting the predictive (not concurrent) validity, including explicitly reporting sensitivity and specificity, have been included. Predictive validity, particularly sensitivity, is higher when used with middle-class cohorts (Wetherby and Prizant, 2001, Wetherby *et al.*, 2003, Heilmann *et al.*, 2005), than with cohorts experiencing adversity (Feldman *et al.*, 2005). A caveat to this finding is that published research with low-income families typically use the
Predictive validity of 12-month behaviours

MCDI (Pan et al., 2004, Feldman et al., 2005, Arriaga et al., 1998), so less is known about the predictive validity of the CSBS DP with cohorts experiencing adversity.

Limitations of the MCDI and CSBS DP for children experiencing adversity

The fact that the predictive validity of the MCDI is lower when used with children experiencing adversity is one drawback; but there are other limitations with using the MCDI and CSBS DP with these children. Parental reporting can vary depending on SES whereby lower SES parents can under and over report skills, particularly vocabulary knowledge (Roberts et al., 1999). Differences in reporting may be less problematic for the CSBS DP, as it reports on skills beyond vocabulary (Eadie et al., 2010). As the MCDI is more frequently used with cohorts experiencing adversity, and focuses on vocabulary understanding and use, variations in parental reporting may confound MCDI results to a greater extent. Moreover, at 12 months of age, behavioural samples may provide a more robust method of capturing communication when compared to parent report as, at this stage of development (i.e. before children routinely use consistent words), it can be particularly difficult for parents to describe less overt communicative skills, such as prelinguistic behaviours (Eadie et al., 2010). Parent reported measures, such as the MCDI, CSBS DP checklist and the CSBS CQ, may therefore be less accurate at assessing prelinguistic and early linguistic skills in children experiencing adversity. Although the CSBS DP BS is a useful observational measure, it can take around 30-40 minutes to complete. Plus, only one measure of early communication may not be enough to accurately identify future language difficulties for these children (McKean et al., 2016, Feldman et al., 2005).
Predictive validity of 12-month behaviours

Importance of the parent-child interaction

Another limitation with using the MCDI and CSBS DP with cohorts experiencing adversity is that they fail to include a measure of parent-child interaction; yet the parent-child dynamic may contribute more to language outcomes for these children (Baydar and Akcinar, 2015). The reason why parenting may contribute more to their language development is that fiscal restrictions can limit the learning experiences (e.g. extra-curricular excursions, access to educational materials and access to high-quality education services) that the family can afford to provide for the child (Brooks-Gunn and Duncan, 1997). As such, parent-child interactions may play a more substantive role in language learning for these children (Baydar and Akcinar, 2015). Furthermore, parents experiencing adversity can be less sensitive and more intrusive in adult-child interactions, with less sensitive, more intrusive parenting related to poorer language outcomes (Keown et al., 2001). Consequently, parent-child interactions within families experiencing adversity may have more influence on language development, yet be less conducive to language acquisition.

One key feature of parent-child interactions which has been related to later language is the communication dynamic between the mother and child (Roe and Drivas, 1997). Reciprocal, balanced mother-child interactions can promote joint attention and encourage topic continuation thus helping facilitate associations between words (Song et al., 2014). Reciprocal early conversations also allow the child to practice using their words meaningfully within a communicative context (Roe and Drivas, 1997). The mother-child dynamic has been found to be especially important for infants experiencing adversity, as evidenced by one study of low-income children (Hirsh-Pasek et al., 2015). In the Hirsh-Pasek et al. (2015) study, the fluency and connectedness of mother-child conversation at 24 months was the strongest predictor of 36-month language; a stronger predictor than child words per minute or maternal sensitivity at 24 months.
Predictive validity of 12-month behaviours

Rationale for the current study

Eadie et al. (2010) propose that observational or behavioural samples are more accurate at capturing communication skills of 12-month-old children. The CSBS DP BS can take around 30-40 minutes to complete. Plus, there is limited literature reporting on the predictive validity of this measure with families experiencing adversity. Furthermore, to accurately identify future language difficulties for these children, measurement of additional factors beyond just the child’s early language (e.g. a measure of adult-child interaction) may be necessary (McKean et al., 2016, Feldman et al., 2005). Capturing verbal and non-verbal behaviours and the mother-child communication dynamic, via a more efficient method, could be valuable for predicting later language. Exploring these behaviours in a cohort of children at greater risk of language difficulties who are typically underrepresented in the literature, is also an important addition to the literature (Pan et al., 2004).

The current study

This study investigated the predictive validity of verbal and non-verbal communicative behaviours and the fluency and connectedness of mother-child conversation at 12 months in relation to language at 24 and 36 months in a large cohort experiencing adversity (n=190).

Methods

Study participants

The current study is nested within the XXX trial. The XXX trial is an ongoing, randomised controlled trial (RCT) exploring the effectiveness of sustained nurse home visiting provided to women experiencing adversity from pregnancy to child age two years. Seven hundred and twenty-two pregnant women experiencing adversity were recruited to the XXX trial between
April 2013 and September 2014 from public maternity hospitals in Victoria and Tasmania, Australia.

Prior to recruitment to the XXX RCT, a pilot screening survey was carried out to ascertain risk factors which would best capture women suitable for XXX support. The screening survey was piloted on 166 women in antenatal hospital waiting rooms in Victoria, Australia in February-March 2013. The screening survey contained questions designed to elicit maternal risk factors. To test the validity of the data collected, consent was gained to link the screening data with midwifery collected information from hospital electronic records. These records contained more sensitive information than was included in the screening survey, for example, drug use, domestic violence and mental health difficulties. Following the screening and data linkage, a statistician used an algorithm to identify suitable women for the XXX trial. Analysis revealed that eligibility on any two of the following risk factors would capture women suitable for the XXX trial: current smoking, young pregnancy (<23 years), no support during pregnancy, poor/fair/good health (versus very good/excellent general health), anxious mood, not finishing high school, not having a household income, a long-term illness, not living with another adult and/or never having a job. All women in the current study had two or more of these risk factors. For more details about XXX see Goldfeld et al. (2017).

Following an initial baseline assessment at home, participants were randomised to intervention and control arms. Women from the control arm who completed mother-child free-play videos at face-to-face assessments at 12 and 24 months were included in this study (n=190). The control arm was chosen to eliminate any intervention effects. Those women were followed up at 36 months where child language was directly assessed. Retention was 77.9% (n=148) at the 36-month follow-up.
Table 2 presents baseline information about mothers and their infants. At baseline, average maternal age was 28.3 years. According to the Socio-Economic Indexes for Areas (SEIFA), 34.2% of families lived in the most disadvantaged quintile and almost a fifth were experiencing housing problems (18.9%). Fifteen mothers spoke English as an additional language; home languages included Bengali, Urdu, Tamil, Punjabi and Filipino. Average infant age was 12.2 months. A third of infants were first born (30.5%) and just under half were female (46.8%). Mothers were asked to report on any diagnosed medical conditions including hearing status at 36 months; no children were reportedly diagnosed with hearing loss.

[Table-2]

Ethics

Ethical approval was gained from XX (HREC Number: 32296A) for the XXX study. Ethical approval was also gained from XXXX, Human Research Ethics Committee for the current study (Ethics Application ID: 1545222.1).

Procedures

The XXX researchers conducted the 12- and 24-and 36-month face-to-face assessments in the home. Videos of mother-child free-play were taken during the 12- and 24-month assessments. An iPad was used to record eight minutes of free-play. At both assessments, an identical set of age-appropriate toys was provided. The data for this current study comes from analysis of five minutes or 300 seconds (s) of footage from the middle of each video. Five minutes of footage was chosen in the middle of the videos to allow for warm up and fatigue. Five minutes was deemed suitable for the purpose of the coding scheme as previous research found that 13-month-old infants used a verbal or gestural initiative directed towards their
mother approximately every 20 seconds during five minutes of footage (Lloyd and Masur, 2014). Child language was directly assessed at 36 months using the Clinical Evaluation of Language Fundamentals Preschool Second Edition (CELF-P2; Wiig et al., 2006).

12-month verbal, non-verbal and fluency and connectedness

Eleven measures of early communication were initially reviewed to generate suitable communicative behaviours to code from video footage including the CSBS DP, MCDI; Communication Matrix (Rowland and Fried-Oken, 2010), Rossetti Infant-Toddler Language Scale (Rossetti, 2006) and Child Development Inventory (Ireton, 1992). Communicative behaviours listed in the measures were considered in relation to their developmental stage of communication to ensure suitability of chosen behaviours (see Bates et al., 1979). Behaviours also needed to be relatively frequent and easily observable during mother-child free-play and be related to later language skills.

Eleven non-verbal and verbal behaviours were originally selected and piloted on ten videos. Table 3 lists communicative behaviours and studies reporting association between these behaviours and later language skills. The behaviour of ‘responding to words within speech’ initially included multiple words (look, stop, wait, in, out, me, my, come, more, off and child’s name). However, frequency of individual words was low (aside from look and the child’s name) and coding was too complex. As such, only responding to look and name were chosen to be coded. At this point, a second coder was trained in using the scheme. Following the pilot, five behaviours were initially discontinued as consistent interrater reliability could not be met (<80% agreement). Excluded behaviours were infant reaching for an object, responding to look, responding to name, responding to request to give/show and following pointing. Reaching behaviours occur in response to a desired object and can be classified as arm and shoulder movement against gravity and midline grasping (Bruner, 1973). Reaching
Predictive validity of 12-month behaviours

can be subdivided into no touch, touch and grasp (Fetters and Todd, 1987). During coding, it was problematic to operationalise these definitions using the available videos. For instance, how to code when the child’s hand was obscured by toys or the mother, the distance the child’s arm needed to be outstretched to qualify as a reach and whether or not a reach was counted if the child did not physically touch the desired object.

For the behaviours of responding to look, responding to name, responding to request to give/show and following pointing, poor reliability was due to lack of consensus on whether a child had understood and responded to only the spoken instruction. For instance, it was problematic to delineate if a child’s response was based on an additional cue provided with the verbal instruction, like the mother banging an object or touching the child’s arm. Infant behaviours were therefore only included if they were not elicited by the mother and not in response to maternal behaviour (Lloyd and Masur, 2014). In total, four non-verbal (looking to mother’s face, showing/giving mother an object, pointing and pretend play) and two verbal (vocalisations and words) behaviours were coded at 12 months. Behaviours were coded using Observer® XT software by the first author for the five minutes in the middle of the 12-month videos. See table 4 for detailed descriptions of 12-month verbal and non-verbal behaviours.

[Table-4]

The balance and reciprocity of adult-child conversation was also measured at 12 months using the fluency and connectedness rating scale from Hirsh-Pasek et al. (2015). The rating scale was assigned using the technical report procedure from the Communication Foundation Rating Items (Adamson et al., 2012). To measure fluency and connectedness, the same five minutes of 12-month video footage was re-watched and scored. See table 5 for
details about fluency and connectedness scoring.

[Table-5]

Conversationally-derived language measures at 24 months

Five minutes of each 24-month video were transcribed using the Systematic Analysis of Language Transcripts (SALT) software to generate 24-month language measures. All videos were transcribed by the first author, an experienced paediatric speech and language therapist (SLT). Coding conventions were consistent with SALT software. The child’s mean length of utterance (MLU) and number of unique words were calculated from the videos.

36-month child language (outcome measure)

Three subtests of the CELF-P2 were administered at 36 months: Sentence Structure (SS), Word Structure (WS) and Expressive Vocabulary (EV). The three subtests scores combine to achieve a Core Language (CL) score.

Reliability

For infant behaviours at 12 months and child language at 24 months, interrater reliability was conducted on 10% of the sample. Intraclass correlation coefficients were considered suitable to assess interrater reliability. Videos were randomly selected and coded by a second coder. Reliability was acceptable for 12-month communicative behaviours with the following coefficients: looks to face (1.0), words (0.96), vocalisations (0.96) and give/show (0.80). There were no instances of pointing or pretend play in the interrated infant videos hence coefficients are unavailable for either measure. Reliability was also acceptable for 24-month language measures with the following coefficients: MLU (.99) and unique words (.94). For fluency and connectedness, the weighted kappa statistic was used to measure interrater
agreement; agreement was met when both raters achieved the same score or one score apart. Substantial agreement was met between raters (k=0.80). Regarding 36-month CELF-P2 assessments, all subtests were initially scored and entered into the XXX database by the administering research assistant. All assessment data was then cross-scored and checked by a colleague. Any difficult scoring decisions were sent to the XXX Research Coordinator who liaised with the first author (an SLT) to make the final scoring decisions.

Analysis
The predictive validity of fluency and connectedness, non-verbal behaviours and verbal behaviours at 12 months was calculated in relation to 24- and 36-month language outcomes. Communication behaviours were grouped together based on the Eadie et al. (2010) study who found that the seven prelinguistic aspects of development in the CSBS DP fitted into three composites: speech, social and symbolic. Vocalisations and words were summed to create a verbal (speech) variable. Looking to mother’s face, showing/giving mother an object, pointing and pretend play were summed to create a non-verbal (social) variable. In the Eadie et al. (2010) study, object use was included in the symbolic composite along with understanding. As understanding of language could not be accurately measured in this study, pretend play was included in the non-verbal variable as it has been positively associated with children’s gesture use (Hall et al., 2013).

Failed performance criteria
To align with past research (Feldman et al., 2005, Wetherby et al., 2003, Wetherby and Prizant, 2001), failed performance was determined as scoring ≤10th percentile, unless otherwise stated. For non-verbal behaviours at 12 months, failed performance was a score of zero. For verbal behaviours at 12 months, failed performance was a score of ≤2. Failed
performance on fluency and connectedness was a score of one (reflecting that no conversation had been established between the mother and infant for the duration of the video). Only 5.8% of children had a fluency and connectedness score of one \((n=11)\). For 24-month unique words, failed performance was \(\leq 5\) words. For 24-month MLU, failed performance was \(\leq 18\)th percentile as (aside from a score of zero) the lowest MLU a child could achieve was one. For 36-month CELF-P2 scores, failed performance was a score of \(\leq 70\).

Calculating predictive validity

Sensitivity was determined by calculating the proportion of children with scores \(\leq 10\)th percentile at 12 months (or a score of one for fluency and connectedness) who had scores \(\leq 10\)th percentile (\(\leq 18\)th percentile for MLU) at 24 or 36 months. Specificity was determined by calculating the proportion of children with scores \(>10\)th percentile at 12 months (or a score greater than one for fluency and connectedness) who had scores \(>10\)th percentile (\(>18\)th percentile for MLU) at 24 or 36 months. The PPV was calculated by taking the proportion of children scoring in the bottom range at both ages (\(\leq 10\)th percentile unless otherwise stated) out of the total number of children within the bottom range at 24 or 36 months. The NPV was calculated by taking the proportion of children scoring above the bottom range at both ages (\(>10\)th percentile unless otherwise stated) out of the total number of children scoring above the bottom range at 24 or 36 months (see Wetherby *et al.* 2003 for more details). As per previous research, no differentiation was made between genders (Feldman *et al.*, 2005).

Adjusted linear regressions

Adjusted regression analyses were then conducted to explore if fluency and connectedness, non-verbal behaviours and verbal behaviours at 12 months predicted 24 and 36-month
language outcomes. Figures were adjusted for potential confounders including: age at assessments; child gender; maternal education; birth order; main language; and family history of communication difficulties.

Results

Descriptive statistics

Table 6 presents mean scores, standard deviations and ranges for the 12-, 24- and 36-month measures. In the 12-month videos, around half of children used words (47.4%) and almost all vocalised (95.8%). Eight children (4.2%) did not vocalise during the 12-month videos. Looks to face was the most common 12-month non-verbal behaviour demonstrated (86.3%). Very few children exhibited pretend play (7.9%) or pointing (3.2%). At 24 months, the average MLU was 1.26 and the mean number of unique words was 19. Four children (2.1%) did not talk during the 24-month videos. The average CELF-P2 score at 36 months was 0.62 SDs below the population mean (100) at 90.72.

[Table-6]

Predictive validity

Table 7 presents the sensitivity, specificity, PPV and NPV of 12-month fluency and connectedness, verbal behaviours and non-verbal behaviours in relation to MLU and unique words at 24 months and CELF-P2 scores at 36 months. Across all values, specificity was markedly higher than sensitivity and the NPV was higher than the PPV. No 12-month measure demonstrated adequate predictive validity defined as >.80 for both sensitivity and specificity. Sensitivity scores were particularly low ranging from .6-.39.

[Table-7]
Adjusted regression analyses

Adjusted regression analyses were conducted to explore if fluency and connectedness, verbal behaviours and non-verbal behaviours at 12 months predicted MLU and unique words at 24 months and CELF-P2 scores at 36 months in the presence of potential confounders. Table 8 presents adjusted regression models. Fluency and connectedness at 12 months predicted 24-month unique words (coefficient 1.81, 95% CI [.09, 3.53], p=.040) and 36-month CELF-P2 scores (coefficient 2.67, 95% CI [.00, 5.33], p=.050). Verbal behaviours at 12 months predicted 24-month unique words (coefficient 1.83, 95% CI [.53, 3.12], p=.006). No other adjusted regressions were significant.

[Table-8]

Discussion

This study aimed to explore the predictive validity of verbal behaviours, non-verbal behaviours and the fluency and connectedness of mother-child conversation at 12 months in relation to MLU and unique words at 24 months and CELF-P2 scores at 36 months. Across all 12-month measures, specificity and the NPV were higher than sensitivity and the PPV, reflecting that measures collected at 12 months were poorer at identifying children who had low language at 24 and 36 months than those who did not have low language at 24 and 36 months. These results reflect previously published predictive validity studies using the MCDI and CSBS DP where there was a trend for sensitivity to be higher than specificity. Although predictive validity was poor across all measures at 12 months in the current study, fluency and connectedness predicted unique words at 24 months and CELF-P2 scores at 36 months in adjusted regression models. Verbal behaviours at 12 months predicted unique words at 24 months in adjusted models.
Poor predictive validity

Language measures collected in laboratory environments across the second year have been found to have limited stability (Fenson et al., 2007). In accordance with the current research, Feldman et al. (2005) also reported poor predictive validity using the MCDI with two-year-old children. In their discussion, the authors warned that language measures collected at two years are too unstable for use in clinical or research settings. Furthermore, the Feldman et al. (2005) and the current study comprised children experiencing adversity. Poorer language skills in these groups of children (reflected in the children in the current study having mean CELF-P2 scores 0.6 SDs below the mean) may have impacted predictive validity in both studies due to less within-group variation of scores (Arriaga et al., 1998). Poor predictive validity in the current study could also be due to the shorter play duration and the type of free-play activity captured at 12 months. Lower frequencies of some behaviours (e.g. pointing and pretend play) and small numbers of children scoring in the bottom range (e.g. only eleven children had a fluency and connectedness score of one) may further explain poor prediction accuracy. Potentially there were too few children scoring in the bottom ranges, particularly for fluency and connectedness, to make accurate predictions. A different or extended free-play task may have provided more suitable data for measuring predictive validity for the purpose of the current study.

Fluency and connectedness and verbal skills

Although predictive validity was poor using all measures collected at 12 months, fluency and connectedness and verbal skills predicted later language scores in adjusted regression analyses. The fact that earlier verbal skills predicted later verbal skill is unsurprising as this has been consistently reported in the literature (McCathren et al., 1999). This study reproduced previous research by demonstrating the value of fluency and connectedness to
Predictive validity of 12-month behaviours

later language outcomes; the current study extended this research by showing that fluency and connectedness was important for language learning as young as 12 months of age (Hirsh-Pasek et al., 2015). When considered with other factors related to language development, fluency and connectedness and verbal skills at 12 months were important for later language skills. Unlike earlier research, non-verbal behaviours were unrelated to later language in adjusted regression models (Bavin et al., 2008). As spontaneous speech samples are influenced by materials, communication partners and setting (Pan et al., 2004), potentially the free-play scenario used for this research was not conducive to gesture use and pretend play.

Limitations

Neither the CSBS DP nor the MCDI were collected at 12 months so the predictive validity of 12-month behaviours could not be directly compared to either measure. Furthermore, no receptive measures were collected at 12 months so the predictive validity of early comprehension was not measured. Also, only five minutes of footage, during one activity, may have limited the amount and variety of behaviours children could display at both 12 and 24 months, impacting the validity of measures. Additionally, video data may not be entirely representative of typical interactions; this is a drawback of all observational research that must be balanced alongside the strengths and limitations of other measurement options, such as parent-report. Finally, concurrent gesture-plus-word combinations have been related to earlier production of two-word combinations (Iverson and Goldin-Meadow, 2005) so not measuring co-occurring behaviours is a limitation.

Future research could combine observational measures of 12-month behaviours and fluency and connectedness with other predictors of language to try and increase prediction
Predictive validity of 12-month behaviours

accuracy. Capturing communicative behaviours and fluency and connectedness during extended interactions in a typical mother-child exchange would also be worthwhile.

Conclusion

Measures of non-verbal communication, verbal communication and fluency and connectedness at 12 months were poor at predicting language at 24 and 36 months. Poor predictive validity in the current study reiterates the difficulty with identifying children at risk of poorer language in infancy. Adjusted regression models demonstrated that fluency and connectedness of mother-child conversation has the potential to provide important information about language development. Further exploration of mother-child dynamics in relation to language trajectories will be important in future studies.

Acknowledgements

[Omitted for reviewing purposes]

Declaration of interest

The authors report no conflicts of interest. The authors alone are responsible for the content and writings of the paper.

References

HEILMANN, J., WEISMER, S., EVANS, J. and HOLLAR, C. 2005. Utility of the MacArthur-Bates Communicative Development Inventory in identifying language abilities of late-

