Antibacterial effectiveness meets improved mechanical properties: Manuka Honey/Gellan Gum composite hydrogels for cartilage repair

Maria A. Bonifacioa, Stefania Cometab, Andrea Cochisc, Piergiorgio Gentiled, Ana M. Ferreirad, Barbara Azzimontic-g, Giuseppe Procinoe, Edmondo Cecif, Lia Rimondinie-g§, Elvira De Giglioa§*

a Department of Chemistry, University of Bari “Aldo Moro”, Italy
maria.bonifacio@uniba.it

b Jaber Innovation s.r.l., Italy
stefania.cometa@jaber.it

c Department of Health Sciences, University of Piemonte Orientale “UPO”, Italy
andrea.cochis@med.uniupo.it, barbara.azzimonti@med.uniupo.it

d School of Engineering, Newcastle University, UK
piergiorgio.gentile@newcastle.ac.uk, ana.ferreira-duarte@newcastle.ac.uk

e Department of Veterinary Medicine, University of Bari “Aldo Moro”, Italy
edmondo.ceci@uniba.it

f Department of Biosciences, Biotechnologies and Biopharmaceutics, University of Bari “Aldo Moro”, Italy
giuseppe.procino@uniba.it

g INSTM, Consorzio Interuniversitario Nazionale per la Scienza e Tecnologia dei Materiali, Firenze, Italy.
lia.rimondini@med.uniupo.it

§ co-shared authorship

Corresponding author e-mail: elvira.degiglio@uniba.it*

Abstract

Biomaterials for cartilage repair are still far from clinical requirements, even if several studies recently focused on this topic. In this respect, Nature-derived hydrogels are a promising class of scaffolds for cartilage tissue engineering, mimicking the native cellular microenvironment. However, they frequently lack mechanical features required for cartilage certain load-bearing applications and they are commonly subjected to infection threat. This work describes the innovative use of Manuka honey as molecular spacer for preparing gellan gum-based composites with intrinsic antibacterial properties and superior compressive Young’s modulus in respect of
several Nature-derived natural polymer-based gels based on chitosan, hyaluronic acid or alginate reported in literature. The addition of Manuka honey made hydrogels able to inhibit the proliferation of *S. aureus* and *S. epidermidis* clinical isolates. Furthermore, no cytotoxic effects were detected on human mesenchymal stem cells seeded on the hydrogels. Moreover, chondrogenesis experiments showed a consistent expression of collagen II and high synthesis of GAGs and proteoglycans, thus indicating the formation of cartilage matrix. Overall, these data suggest that the encourage a deeper investigation of the developed smart composites have a great potential as tools for their use in the cartilage tissue engineering regeneration field.

Keywords: Manuka honey, Gellan gum, Hydrogel characterization, Mechanical properties, Antibacterial, Cartilage regeneration.

1. Introduction

The main challenge that Biomaterials Science is facing during this century consists in the development of multifunctional systems that meet the requirements of clinicians and biomedical engineers. Indeed, ideal biomaterials should combine cytocompatibility with antibacterial features, degradability and proper mechanical performances (Kothiyal & Srinivasan, 2016).

Since 1960s, hydrogels are among the most attracting polymeric materials for tissue engineering in this landscape, thanks to their high water content and nutrients diffusion, making them ideal candidates as scaffolds for cell colonization and differentiation (Calò & Khutoryanskiy, 2015).

These features are particularly useful for cartilage tissue engineering, since a proper substitute is required to compensate the limited self-healing potential of cartilage (Zhang et al., 2017).

Hydrogels for cartilage repair are obtained from natural and synthetic biomaterials. Among Nature-derived hydrogels, polysaccharide-based hydrogels ones (e.g. based on gellan gum, alginate and chitosan) are particularly interesting because of their low immunogenic profile, easy handling and low costs (Leone & Barbucci, 2009). Nature-derived hydrogels are more biocompatible as
compared to synthetic hydrogels, although their mechanical features still need to be improved (Zhu & Marchant, 2011). To overcome this drawback, several studies describe the functionalization of these polymers with chemical moieties, exploited to support the hydrogel crosslinking (Liu et al., 2017). This approach leads to a moderate improvement of compressive Young’s modulus (e.g. up to 10-50kPa), still far from the mechanical requirements of cartilaginous tissue (Palumbo et al., 2015). Therefore, the preparation of composite hydrogels is currently being explored and represents one of the most promising available strategies (Yang et al., 2017). In this respect, gellan gum-based composite hydrogels (e.g., blends of gellan gum and polyvinyl alcohol or gelatin) show interesting mechanical properties and bio-printability (Wang et al., 2016; Mouser et al., 2016).

In addition, Nature-derived hydrogels have to face the worrying issue of contamination, which could have a dramatic clinical outcome. Indeed, even if surgery-related infections of cartilaginous tissue are uncommon (Stutz et al., 2000), they could cause severe complications (i.e. septic arthritis) mainly due to *Staphylococci* (Wyatt et al., 2017). However, risks of contamination and unsuitable mechanical performances limit their exploitation (Zhu & Marchant, 2011). To overcome these major drawbacks, several strategies have been explored. Concerning the infections issue, the inclusion of antimicrobials into the hydrogel networks is the traditional method to prevent contamination. Recently, the development of hydrogels with intrinsic antimicrobial activity has emerged as an effective alternative. Indeed, hydrogels based on antimicrobial peptides or cationic biopolymers (e.g. chitosan, polycarbonate containing quaternary ammonium groups) actively inhibit bacterial proliferation (Anjum, 2016; Liu et al., 2012).

In this scenario, the present work follows a *Nature*-inspired strategy, using Manuka honey to test two main hypotheses: 1) the exploitation of Manuka honey and its unique viscosity to enhance, at the same time, hydrogels’ mechanical features 2) the potential to overcome simultaneously contamination risks.

Recently, the New Zealand Manuka honey (MH), derived from *Leptospermum scoparium*, is very attractive because of the remarkable non-peroxide antibacterial activity of methylglyoxal (MGO, or
Unique Manuka Factor). Since 2015, when Manuka honey was defined “a tissue engineering essential ingredient” (Speer, et al., 2015), it was employed as diet supplement or wound dresser in combination with chitosan (Carter et al., 2016; Sasikala & Durai, 2015). However, at the best of our knowledge, the neat Manuka honey has never been exploited to synthesise implantable hydrogels. In this work, considering also the high viscosity of MH, it was added, for the first time, as molecular spacer to prepare an innovative gellan gum-based implantable hydrogel for cartilage tissue engineering. The present work explores the intrinsic antibacterial properties of the prepared hydrogels, as well as the improvements in mechanical features. A further enhancement of hydrogels compressive Young’s modulus was also achieved by suitable crosslinkers, such as the cations Mg$^{2+}$ and Ca$^{2+}$, alone or in combination with the natural Halloysite nanotubes (HNT), added as inorganic filler. Since the percentage of the latter is responsible for the hydrogels compressive strength, the HNT amount was properly chosen to maximise mechanical performances as previously reported (Bonifacio et al., 2017).

The characterisation of the prepared hydrogels was achieved by X-ray Photoelectron Spectroscopy (XPS) and porosity measurements, while the mechanical performances were extensively investigated through compression and stress-relaxation studies. The in vitro antibacterial effectiveness of the hydrogels was studied against clinical multi drug resistant (MDR) isolates of *S.aureus* and *S.epidermidis*, selected for their pivotal role in cartilage infections. Finally, cytocompatibility was evaluated on human mesenchymal stem cells (hMSCs), successfully induced to differentiate into chondrocytes on the hydrogels surfaces. The reported results showed a great potential of the prepared hydrogels for cartilage repair.

2. Materials and methods

2.1 Materials

Unless otherwise specified, all reagents were supplied by Sigma-Aldrich (Italy). Gellan gum, hereafter named GG (Phytagel™, formula weight 1,000Kg/mol, low acylation degree) was a linear
anionic polysaccharide, consisting in the repetition of a tetrasaccharide unit, \(\beta-D\)-glucose-\(\beta-D\)-glucuronic acid-\(\beta-D\)-glucose-\(\alpha-L\)-rhamnose, in a 2:1:1 ratio. Halloysite nanotubes (\(Al_2Si_2O_5(OH)_4\cdot2H_2O \)) had a mean diameter of 30-70nm and a mean length of 1-3\(\mu \)m. CaCl\(_2\) and MgCl\(_2\) salts are of Redi-driTM grade. Medical grade Manuka honey12Plus (MH) (ManukaGuard®, US) contained 400mg/Kg of MGO. Ultrapure water was obtained by a Milli-Q® Integral system (Millipore-Merck, Italy). The TRI Reagent® and all the media/supplements for isolation and culture of bacteria and human cells were from SigmaAldrich, while the XTT assay was from LifeTechnologies (Italy). The hanging tissue culture inserts for 24-well plates were from Sarstedt (Italy). The 24-well plates used with the NunclonTM Delta Surface treatment, were supplied by ThermoFisher Scientific (Italy), as well as the 96-well plates. The TaqMan reverse transcription kit was from AppliedBiosystems (Italy).

2.2 Hydrogels preparation

Hydrogels were obtained as previously reported (Bonifacio et al., 2017) for GG-based hydrogels containing glycerol as molecular spacer. Briefly, GG powder (2\%w/v) was dissolved under stirring in 100mL of water at 90±0.5°C, using an ARE Aluminium hot plate stirrer (VELP Scientifica, Italy). After cooling the solution at 60±0.5°C, MH (2\%w/v) was added and vigorously stirred. HNT-reinforced samples were obtained mixing the dissolved components with an aqueous suspension of HNT (0.5w/v), previously sonicated in water for 15min. To obtain mechanical stability of the prepared hydrogels, a crosslinking was achieved through the external gelation method (Kaklamani et al., 2014) using as cationic sources CaCl\(_2\) or MgCl\(_2\) solutions under physiological concentrations (0.025\%w/v and 0.5\%w/v respectively). A list of the hydrogels types prepared in this work is reported in Table 1.
Table 1. Nomenclature and nominal composition of the prepared hydrogels. All the %w/v are expressed in respect to 100mL of water.

<table>
<thead>
<tr>
<th>Sample Code</th>
<th>GG content (% w/v)</th>
<th>MH content (% w/v)</th>
<th>HNT content (% w/v)</th>
</tr>
</thead>
<tbody>
<tr>
<td>GG-MH</td>
<td>2</td>
<td>2</td>
<td>--</td>
</tr>
<tr>
<td>GG-MH Ca</td>
<td>2</td>
<td>2</td>
<td>--</td>
</tr>
<tr>
<td>GG-MH Mg</td>
<td>2</td>
<td>2</td>
<td>--</td>
</tr>
<tr>
<td>GG-MH-HNT</td>
<td>2</td>
<td>2</td>
<td>0.5</td>
</tr>
<tr>
<td>GG-MH-HNT Ca</td>
<td>2</td>
<td>2</td>
<td>0.5</td>
</tr>
<tr>
<td>GG-MH-HNT Mg</td>
<td>2</td>
<td>2</td>
<td>0.5</td>
</tr>
</tbody>
</table>

2.3 Spectroscopic characterisation

Spectroscopic characterisation of the hydrogels was carried out by X-ray Photoelectron Spectroscopy (XPS). Hydrated samples were frozen for 24h at -20±0.1°C, then freeze-dried at 55±3°C for 48h with an ALPHA1-2/LDPlus (Martin-Christ, Germany). Thus, dried hydrogels were examined by a scanning microprobe PHI5000VersaProbeII (Physical Electronics, US), equipped with a monochromatised AlKα X-ray radiation source. The base pressure in analysis chamber was 10⁻⁹ mbar. Samples were analysed in High Power mode with an X-ray take-off angle of 45° (scanned size~1400×200µm). For each specimen, survey scans (Fixed Analyser Transmission mode, binding energy (BE) range 0-1200eV, pass energy 117.4eV) and high-resolution spectra (FAT mode, pass energy 29.35eV) were acquired. Data analysis was performed using the MultiPak software package (version9.6.1.7). Charge referencing was carried out setting the lower binding energy C1s photo-peak (i.e., C1s hydrocarbon peak) at 284.8eV. Quantification (atomic percentage, At.%) was made using normalised peak area. The normalisation of the peak area and comparison of data from different elements were enabled by correction with empirically derived sensitivity factors, according to MultiPak library.
2.4 Evaluation of pore architecture of hydrogels

Hydrogel blocks were fixed overnight (ON) in 4% paraformaldehyde at 4°C and treated as previously reported (Yang et al., 2007). Briefly, hydrogels were rinsed in 5% sucrose in phosphate buffered solution (PBS, pH 7.4) for 1h, then cryoprotected by infiltrating them in PBS with ascending concentrations of sucrose (10%, 12.5%, 15%) at room temperature (~25°C) every 30 min, then the hydrogels were stored in 20% sucrose in PBS ON at 4°C. The 20% sucrose solution was discarded and the hydrogels were incubated for 1h at room temperature with solutions in which the ratios of 20% sucrose in PBS and optimal cutting temperature medium (OCT®, Bio-Optica, Italy) were 2:1, 1:1 and 1:2 v/v. Hydrogels were stored in the last solution ON at 4°C and then infiltrated with fresh OCT® at room temperature for 3h to minimize shattering/cracking during the cryosectioning process. Thin cryosections (10μm) were cut with a LeicaCM1950 cryostat, collected on Superfrost Plus™ microscope slides (ThermoFisher Scientific, Italy) and allowed to air dry. Alternatively, freeze-dried hydrogels (drying procedure in 2.3) were rehydrated in ultrapure water for 24h at 4°C, and infiltrated for 2h with a mixture of PBS/OCT® (1:1v/v), then ON in OCT® alone at 4°C. Cryosections were obtained and collected as reported above. Sections were observed under transmitted light with a LeicaDM6000B microscope equipped with a 10X planar objective and imaged with a LeicaDFC310FX camera. The analysis of pore Feret’s diameter and porosity percentage was performed using ImageJ software. Scaffold porosity was calculated as the ratio between the voids and total surface and expressed as percentage. Calculation was done on six randomly-chosen images for each hydrogel type.

2.5 Release test

For release tests, three hydrogels of each type were incubated in 5mL phosphate buffer (pH=7.4) at 37°C, an aliquot of 0.5mL was collected from each specimen after 24, 48 and 72h and an equal volume of fresh buffer was added. Released calcium and magnesium amounts were determined by the classic direct potentiometric method, exploiting ion selective electrodes (Lvova et al., 2018). To determine MGO release, a derivatisation reaction with o-phenylenediamine (OPD) was carried out...
to obtain the quinoxaline adduct. Samples were incubated for 16h with 2% w/v OPD in phosphate buffer 0.5M (pH 6.5) (Adams et al., 2008). The reaction was performed at room temperature, in the dark. Samples were examined by an Agilent HPLC (1260 Infinity, Agilent Technologies, US) equipped with a 20µL Rheodyne injection loop, a Multiple Wavelength detector and a reversed phase column (Synergi™ Hydro-RP 4µm 150x4.6mm, Phenomenex). An isocratic elution was performed at room temperature (flow rate 0.9mL/min), using mobile phase (Water/ACN 75/25). The column effluent was constantly monitored at 263nm and the OPD derivative of MGO was eluted after 3.50min. The ChemStation software for LC systems (Agilent Technologies) was used for data acquisition and processing. MGO quantification was performed comparing the obtained peak areas with those detected with the standard compound eluted in the same conditions. A linear response was observed for the standard curve ($R^2 = 0.995$). Each analysis was performed in triplicate and results were reported as mean±standard deviation.

2.6 Mechanical characterisation

Mechanical properties under compression of the hydrogels (cylinder-shaped samples 1.6cm diameter and 2cm height) were evaluated using a mechanical testing machine (EZ-SX, Shimadzu, Japan). Five specimens for each composition were tested at room temperature (21°C). The crosshead speed was set at 1mm·min$^{-1}$ and the load was applied while the specimen was compressed until break (~35-40% of original height). Young’s compressive moduli (E) were calculated as the slope of the initial linear portion of the stress–strain curve (0-15%). Furthermore, compression tests of rehydrated freeze-dried hydrogels were performed after immersion in PBS for 1h. The resulting Young’s compression modulus was calculated following the same procedure reported above. Then, to evaluate stress-relaxation properties, the hydrogels were deformed with impermeable plates to a compressive strain of 10%, with a deformation rate of 50mm·min$^{-1}$ to approximate an instantaneous deformation. Within 10% compression, the stresses versus strain relations of the gels were almost linear. Subsequently, the strain was held constant for 900s, while the load was recorded as a function of time. The obtained data were analysed using MATLAB R2015a software (Bonifacio et
al., 2017). In particular, fitting a third order exponential decay (Equation 1) to the relaxation curves, three relaxation times were acquired. The increase in stress during straining was not included when fitting the relaxation curves.

\[
\sigma_t = A_1 \cdot e^{-t/\tau_1} + A_2 \cdot e^{-t/\tau_2} + A_3 \cdot e^{-t/\tau_3} + y_0
\]

(1)

where \(\sigma_t \) is the total stress, while \(A1, A2 \) and \(A3 \) are the amplitudes corresponding to the three different relaxation times \(\tau_1, \tau_2 \) and \(\tau_3 \).

Finally, to evaluate the gels viscosity, a first order exponential decay (Equation 2) was fitted through the relaxation curves of every measurement.

\[
\sigma_t = A \cdot e^{-t/\tau} + y_0
\]

(2)

where \(\sigma_t \) is the total stress, while \(A \) is the amplitude corresponding to the relaxation time \(\tau \).

Moreover, the viscosity (\(\eta \)) was obtained multiplying the relaxation time \(\tau \) by the linear equilibrium modulus \(E_{eq} \), obtained fitting the initial linear part of the strain curve of the straining protocol and creating a linear fit.

2.7 Antibacterial Activity Evaluation

2.7.1 Bacterial growth conditions

Bacterial strains were clinical isolates tested for their multi-drug resistance (MDR) by the Novara Maggiore Hospital, Clinical Microbiology Unit. All the specimens were obtained after patient’s informed consent and in full accordance with the Declaration of Helsinki. A single colony of \(S.aureus \) and \(S.epidermidis \) MDR strains from an ON culture onto differential and selective Mannitol Salt and Trypticase Soy (TSB) Agar plates was resuspended in 9mL of Luria Bertani broth (LB) and incubated at 37°C for 18h at 200rpm. Then, cultures were diluted 1:10 in LB and incubated at 37°C for 3h (Lag phase) to achieve the logarithmic growth phase. Finally, a fresh culture was prepared for each experiment diluting bacteria until a concentration of 1x10^5 cells/mL (o.d. at 600nm~0.001) (Cochis et al., 2016).
2.7.2 Biofilm formation

To test antibacterial properties, hydrogel specimens were manufactured as 16mm diameter, 3mm thickness disks; these were gently handled by sterile surgical tweezers and placed onto the bottom of 24-well plates (without fixing the samples). Then, specimens were sterilised by UV-irradiation for 30min/side. Sterile samples were covered with 1mL of LB containing 1x10^5cells/mL. Samples were incubated for 90min at 37°C under agitation at 2g (adhesion phase). Then, supernatants containing floating planktonic cells (separation phase) were removed and the specimens gently washed with 1mL of 1X PBS. Finally, each specimen was rinsed with 1mL of fresh LB and incubated for 24, 48 and 72h at 37°C for biofilm culture.

2.7.3 Bacterial viability

A metabolic analysis, assay based on 2,3-Bis(2-methoxy-4-nitro-5-sulfophenyl)-2H-tetrazolium-5-carboxanilide assay (XTT) was performed to assess bacterial growth ability after 24, 48 and 72h of direct contact with the hydrogels compared to polystyrene. Briefly, 100µL of XTT solution (0.3mg/mL in acetone containing 0.1M menadione) were added to each well and incubated at 37°C for 5hs in the dark. Then, 50µL were collected, centrifuged for 2min at 480g to remove debris and the o.d. was evaluated spectrophotometrically at 450nm using a VICTOR Multilabel Plate Reader (Perkin Elmer, US). The bacteria viability of bacteria onto polystyrene was considered as control.

2.8 In vitro Biological tests

2.8.1 Eukaryotic cell culture conditions

Human mesenchymal stem cells (hMSCs) purchased from the American Type Culture Collection (adipose-derived, ATCC-PCS-500-011) were cultured at 37°C, 5% CO₂ in basal medium intended as low-glucose Dulbecco’s Modified Eagle Medium (DMEM) supplemented with 5% foetal bovine serum (FBS) and 5ng/mL of human fibroblast growth factor-2 (hFGF-2). Cells were cultured until 70-80% confluence, detached by trypsin-EDTA and used between passages II-IV, to ensure undifferentiated state.
2.8.2 MSCs cytocompatibility

Hydrogels’ cytocompatibility was investigated in vitro by direct and indirect assays (Fig. 6A-B) to detect the possible presence of toxic compounds onto the hydrogel surfaces or released into the medium, respectively. For the direct assay, specimens were manufactured as 16mm diameter, 3mm thickness disks and placed into a 24-well plate by sterile tweezers for UV sterilization as prior described in 2.7.2. Then, 2x10^4 cells were seeded directly onto each sample surface in order to achieve a direct contact between cells and specimens’ surface (Fig. 6A). Cells were diluted into 1mL of basal medium (intended as low-glucose DMEM supplemented with 5% FBS and 5ng/mL hFGF-2) and dropwise deposited onto specimens’ surface. For the indirect assay, 2x10^4 cells were seeded in the polystyrene bottom of a 24-wells plate and cultured in basal medium, with the test hydrogel suspended in a porous insert on the top of the same well to obtain a continuous release without a direct contact with cells (Fig. 6B). For both experiments, cell viability was evaluated after 1, 3, 5 and 7 days by the XTT assay. At each time-point, medium was completely removed and replaced with 1mL/specimen of XTT solution (3mg/mL prepared in basal medium). The plates were incubated at 37°C for 4h in the dark, then 100µL were collected from each test well and transferred to a 96-well plate. The o.d. was evaluated spectrophotometrically at 450nm by a VICTOR Multilabel Plate Reader (Perkin Elmer, US). Cells cultured onto polystyrene were considered as control (100% viability) to normalise the results (Cochis et al., 2017).

2.8.3 Chondrogenesis

MSCs were directly seeded on hydrogels surface and cultured for 48h in basal medium to allow adhesion and cell spread. Then, basal medium was replaced with chondrogenic medium (high glucose DMEM 4.5g/L with 10% ITS+1 Premix Tissue Culture Supplement, dexamethasone 10^-7 M, ascorbate-2-phosphate 1µM, 1% sodium pyruvate and TGF-β1 10ng/mL) and cells were cultured for 21 days. MSCs cultured onto polystyrene in the same conditions onto polystyrene were used as positive control considering polystyrene as the gold standard material for stem cells cultivation and differentiation.
2.8.4 Chondrogenesis analysis

After 21 days of culture, hMSCs chondrogenesis was evaluated by real-time Polymerase Chain Reaction (PCR) and histology. Cells were digested for 5 min with TRI reagent® and RNA was reverse transcribed with TaqMan reverse transcription kit using random hexamers. For real-time PCR, TaqMan Gene Expression Assays was used in a GeneAmp7500Real-Time PCR System (Applied Biosystems, USA). Data were normalised towards the endogenous control gene (18S rRNA) and reported as fold expression. Chondrogenic collagen-II (COLII), aggrecan (ACAN) and collagen-I (COLI) were analysed (Table 2). For histological analysis, cells were fixed onto the specimens surfaces by a sucrose-formaldehyde solution (50:50, 10 min at RT) and stained with Safranin-O or Alcian blue (Cochis et al., 2017).

Table 2. Primers and Probes Summary.

<table>
<thead>
<tr>
<th>Gene</th>
<th>Abbreviation</th>
<th>Forward (5’-3’)</th>
<th>Reverse (5’-3’)</th>
<th>Probe (5’FAM/3’TAMRA)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Collagen type-I</td>
<td>COL 1</td>
<td>CCC TGG AAA GAA TGG AGA TGA T</td>
<td>ACT GAA ACC TCT GTG TCC CTT CA</td>
<td>CGG GCA ATC CTC GAGCAC CCT</td>
</tr>
<tr>
<td>Collagen type-II</td>
<td>COL 2</td>
<td>GGC AAT AGC AGG TTC ACG TAC A</td>
<td>GAT AAC AGT CTT GCC CCA CTT ACC</td>
<td>CCT GAA GGA TGG CTG CAC GAA ACA TAC</td>
</tr>
<tr>
<td>Aggrecan</td>
<td>ACAN</td>
<td>AGT CCT CAA GCC TCC TGT ACT CA</td>
<td>CGG GAA GTG GCG GTA ACA</td>
<td>CCG GAA TGG AAA CGT GAA TCA GAA TCA ACT</td>
</tr>
</tbody>
</table>

2.9 Statistical analysis

Statistical analysis of data was performed using the
Statistical Package for Social Sciences (SPSSv.20.0, IBM, US). Data were compared by ANOVA, followed by Tukey’s test. The significance level was set at $p<0.05$. The Student’s t-test for unpaired data was used only for porosity measurements only.

3. Results and discussion

3.1 XPS characterisation

The hydrogels elemental composition was studied by XPS analysis (Fig.1A). As expected from GG and MH composition, the main elements detected were carbon and oxygen. Indeed, GG consists in a tetrasaccharide unit (see section 2.1), repeated to form long linear chains (Bacelar et al., 2016). Similarly, the content of total reducing sugars in MH (mainly glucose and fructose) was $>75\%$ (Visweswara Rao et al., 2016), while a wide range of phenolic and flavonoids compounds represented the minor MH constituents. Magnesium and calcium elements, deriving from crosslinking, were also detected. Beyond the signals clearly ascribable to the polymeric matrix, the molecular spacer and crosslinkers, the samples enriched with HNT additionally displayed silicon and aluminium signals in the characteristic 1:1 stoichiometry.
Figure 1. XPS characterization of the prepared hydrogels. Relative atomic percentages calculated for each sample type (A). XPS curve fitting of high resolution C1s spectra of the relevant samples (B).

In our previous work, when HNT were incorporated in a gellan gum-glycerol matrix, a decrease in silicon and aluminium binding energies was detected (Bonifacio et al., 2017), suggesting the hydrogen bond formation between nanoclays and the polymeric network. In this study, the binding energies of silicon and aluminium signals, 102.8 and 74.2eV respectively, did not show any difference when HNT were included in all the hydrogel matrices. Therefore, no interactions between HNT and the organic network occurred.

An accurate curve fitting of the C1s spectra (Fig.1B) revealed the overlapping of GG and MH contributions, making impossible an unequivocal interpretation. On the other hand, considering the binding energies of carboxylic acid groups, it was evident that, in the case of GG-MH-HNT Mg, this contribution fell at 289.0±0.1eV, whereas for the other samples it fell at 288.5±0.1eV. This
result indicated a poor coordination between the cation and the GG carboxylic acid groups for GG-
MH-HNT Mg system.

3.2 Evaluation of pore architecture of hydrogels.

The ultrastructure of hydrogels was investigated on cryosections. Since the water content in the
samples was high, we adapted a previously reported infiltration method to completely and gradually
replace water with freezing medium before cryosectioning (Yang et al., 2007). Fig.2 showed
micrographs of each hydrogel type before (A-D) and after freeze-drying (E-H). Void spaces are
present in all hydrogels, likely representing cross-section areas of gel pores. HNT were easily
detectable as darker particulate scattered in the hydrogel matrix (Fig.2B, D, F and H). The shape of
the voids appeared more regular and round in Fig.2A-B compared with Fig.2C-D, regardless of the
presence of HNT. Concerning the freeze-dried hydrogels, a different organization of voids, with
larger voids surrounded by much smaller ones in all hydrogel matrices was observed (Fig.2E-H).

Fig.2I summarises the results of the analysis of mean Feret’s diameter of the pore and the
percentage of porosity. Statistical analysis, on Feret’s diameter, found no significant difference in
A vs B and C vs D but a significant difference in A vs C and B vs D (both p<0.0001) with the voids of
Mg$^{2+}$-crosslinked hydrogels significantly smaller than Ca$^{2+}$-crosslinked ones. Concerning freeze-
dried hydrogels, there was no significant difference in G vs H. Statistically significant differences
were obtained in E vs F (p<0.01), E vs G and F vs H (both p<0.05). The porosity of all samples
(between 41 and 75%) may influence the mechanical behaviour of each hydrogel prepared. It has to
be underlined that hydrated hydrogels did not show a porous internal structure (data not shown). As
they cannot undergo the procedure of paraffin embedding, thus cryosectioning, preceded by the
substitution of the water in the matrix, is the only method to cut and observe ultrathin slices.

Freezing the samples at -20°C before cutting and air drying of the sections may mimic a
conventional procedure of freeze-drying. After conventional freeze-dehydration protocol, the
hydrogels were also studied. In both conditions, we observed a change of micro-architecture,
shifting from a homogeneous to a porous structure with pore diameter depending both on the drying
protocol and the crosslinker used. This observation is fundamental as it suggests that, playing on
different parameters (e.g. freeze-frying, crosslinker), a wide range of GG hydrogels suitable for
different needs of regenerative medicine could be obtained. In all cases, the pore size and
distribution are optimal for chondrocyte differentiation and cartilage regeneration.

Figure 2. Bright field micrographs of gellan gum scaffold hydrogels cryosections.

In particular, the GG-MH-HNT Mg hydrogel showed a mean pore diameter (257±48µm) and
porosity percentage (75%), that seems to better approach the required standard of an optimal
scaffold for cartilage regeneration (Tanaka et al., 2010).

3.3 Release test
Cationic release was studied in the early stages of conditioning in PBS (24, 48 and 72h) (Fig.3A-B).

For calcium release, no significant differences were observed between GG-MH Ca and GG-MH-HNT Ca at each time-point (Fig.3A). Conversely, the presence of HNT delayed magnesium ions release (*p<0.05) (Fig.3B), which might be explained by the formation of transient bonds, encouraged by the higher mobility of Mg$^{2+}$, compared to Ca$^{2+}$, in the polymeric network.

Figure 3. Calcium (A) and magnesium (B) release from the prepared hydrogels, with or without HNT, after 24, 48 and 72h. (C) Methylglyoxal release from the same samples. Statistically significant differences (p<0.05) are indicated by the *.

This hypothesis is also supported by mechanical test (section 3.4). Furthermore, the release of MGO from hydrogels was also evaluated by HPLC analysis, since in literature this molecule seems to have a remarkable influence on MH antibacterial performances (Stephens et al., 2010). The results of MGO release are shown in Fig.3C. After 24h of incubation, no significant differences were observed between the four crosslinked hydrogel types and the two non-crosslinked hydrogels. However, after 48 and 72h, the amount of MGO released from non-crosslinked samples was
remarkably higher than that of the other hydrogel types (*p<0.05). Therefore, it could be hypothesised that Ca\(^{2+}\) and Mg\(^{2+}\) could play a pivotal role hindering MGO release. Conversely, HNT presence did not alter MGO release.

3.4 Mechanical characterisation

The mechanical properties of all the hydrogels were evaluated by static compression tests. As an example, Fig.4A shows the stress-strain curve obtained compressing a GG-MH-HNT Mg sample at a strain of 0-35%. For each sample, compression Young’s modulus (E) was calculated from the relevant stress-strain curves (Fig.4C). Interestingly, all the samples showed high values of E (>100kPa) compared with other natural hydrogels for soft tissue and/or cartilage regeneration (Peak et al., 2013). Only HNT-reinforced gels showed a dramatic increase of E value compared with the non-reinforced samples. Moreover, in this study, the compressive moduli of the prepared hydrogels were also higher (~25-30%) than those of similar systems recently described (Bonifacio et al., 2017).

Thus, it could be hypothesised that MH, herein exploited for the first time as molecular spacer for hydrogel manufacturing, played a key role in the enhancement of the compressive moduli of the prepared systems. Furthermore, MH presence made the hydrogels more flexible and easy to handle. Concerning the impact of HNT addition on mechanical features, the inorganic filler did not significantly change the compressive moduli of the gels crosslinked with Ca\(^{2+}\) (GG-MH Ca 116±5kPa vs GG-MH-HNT Ca 108±10kPa). On the other hand, HNT presence dramatically improved the stiffness of Mg\(^{2+}\)-crosslinked samples (102±9kPa for GG-MH Mg vs 143±8kPa for GG-MH-HNT Mg). This mechanical reinforcement could be attributed to the different gelification mechanisms introduced by Mg\(^{2+}\) and Ca\(^{2+}\) ions. In this respect, Donati and co-workers reported that Mg\(^{2+}\) act as diffusively bound ions rather than strongly site-bounded ions such as Ca\(^{2+}\) (Donati et al., 2009). This behaviour may allow a different mobility of the nanofillers in the polymeric network. Therefore, in Mg\(^{2+}\)-crosslinked hydrogels, HNT may orient and align under compression stress, establishing temporary bonds between polymer chains (without the formation of permanent
hydrogen bonds, as revealed by XPS analysis), thereby creating a local region of enhanced strength.

Conversely, in presence of Ca\(^{2+}\), HNT may become less mobile, preventing the occurrence of the energy dissipation mechanism hypothesised for Mg\(^{2+}\) (Shah et al., 2005). Furthermore, as described in section 3.2, Mg\(^{2+}\)-crosslinked hydrogels were characterised by a lower volumetric porosity than Ca\(^{2+}\)-crosslinked ones. As largely described in literature, the porosity is inversely proportional to scaffolds compression moduli. Therefore, both parameters should be carefully considered in in vivo cell enrichments because, when the mechanical strength is sufficient to maintain the pore structure upon implantation, the pore volume determines the number of recruited cells (Kim et al., 2014).

Finally, the hydrogels mechanical properties were evaluated after rehydration of freeze-dried samples in PBS for 1h. A non-statistically significant difference in the calculated moduli (compared with the values of the hydrated one) was observed (ranging from 12 to 15%), that indicates a high mechanical stability and consistency of the hydrogels. In addition to static compression tests, hydrogels viscoelasticity behaviour was studied by relaxation experiments, in which the load decreased at fixed strain in response with time. It is noteworthy to compare the stress-relaxation behaviour of the prepared hydrogels with that of native tissues, since it affects loads transfer, as well as nutrients diffusion (Marijnissen et al., 2002). Fig.4B shows the typical stress relaxation curve obtained after 900s, reporting the relaxation times and viscosity values. A similar response was observed for all the samples: a fast decrease in stress for few seconds after the step strain, followed by a slow relaxation time. Wagenseil et al. (2003) proposed the generalised Maxwell model, consisting in three relaxation times (\(\tau_1=1-10s\), \(\tau_2=10-100s\) and \(\tau_3>1000s\)) for modelling soft biological tissues to evaluate their viscoelastic behaviour. The calculated relaxation times (\(\tau_1\ 7-9s\), \(\tau_2\ 70-80s\) and \(\tau_3\ 480-650s\)) were similar to the values reported in literature for polymeric gels (Wagenseil, et al., 2003). These relaxation times are related with the calculated equilibrium modulus, ranging from 72kPa (GG-MH Ca) to 98kPa (GG-MH-HNT Mg). These values are in accordance with those reported for native cartilage, that vary with depth from the articular surface.
Finally, HNT addition did not significantly influence the viscosity of the hydrogels (Fig. 4C).

Figure 4. Mechanical characterization of the prepared hydrogels. (A) Stress-strain curve obtained by compression test. (B) Stress-relaxation curve. (C) The table reports the Elastic moduli (E), relaxation times (τ₁, τ₂ and τ₃) and viscosities (η) relevant to each hydrogel type.

3.6 Antibacterial Activity

Most of the studies on innovative biomaterials for cartilage repair lack of antibacterial active compounds, likely because arthroscopy-related infections are nowadays considered as very low-risk episodes, affecting only 0.09 to 0.4% of patients undergoing surgery (Bert et al., 2007). However, infections can determine septic arthritis, leading to potentially devastating post-operative complications (Balato et al., 2017). Several case reports showed that the most commonly identified pathogens were *Staphylococci* (Wyatt et al., 2017). Therefore, the prepared hydrogels were tested against clinical isolates of *S. aureus* (coagulase positive) and *S. epidermidis* (coagulase negative), as representative pathogens responsible for joint arthroscopy infections. To this respect, one of the strengths of this work is to exploit MH not only as innovative molecular spacer, but also as antibacterial agent. MH contains a large amount of MGO, which is considered among the most...
effective natural antibacterial compounds, due to its non-peroxide activity (Adams et al., 2008). MH contains 38-725mg/kg of MGO (Karygianni et al., 2016) while ordinary honey only 1.6-135mg/kg.

To give an example of MGO effectiveness, a minimum inhibitory concentration for S. aureus was observed at 1.1mM of MGO (Mavric et al., 2008). Considering these assumptions, the tested hydrogels were infected with S. aureus and S. epidermidis for 24, 48 and 72h, to verify changes in bacterial viability (section 2.8.2). Overall, the tested hydrogels were significantly effective in reducing S. aureus biofilm viability at each time-point in comparison with polystyrene control (Fig.5A, *p<0.05). Particularly, GG-MH Mg samples resulted effective regardless of the presence of HNT, at each tested time-point. Conversely, the introduction of HNT significantly enhanced the antibacterial activity of Ca-crosslinked specimens (Fig.5A, §p<0.05). Furthermore, all hydrogel types reduced S. aureus viability more than 60% compared to control and GG-MH-HNT Ca gels determined a viability reduction of more than 90% after 72h. Concerning S. epidermidis, all tested hydrogels significantly reduced bacterial viability compared to controls at each time-point (Fig.5B *p<0.05), with the only exception of GG-MH Mg after 24h (likely due to the high standard deviation). As observed for S. aureus, HNT increased the antibacterial activity of Ca-crosslinked hydrogels. However, for S. epidermidis, significant differences were noticed only after 24h (p<0.05,§). In agreement with the results obtained with S. aureus, bacterial viability was overall reduced more than 60% after 72h. The raise of the antibacterial effect during the 24-72hs observation time (Fig.5) was in line with Ca(II) and Mg(II) increased cumulative release from the analysed hydrogels as depicted in Fig.3A-B.

To this regard, as evidenced by Xie et al. (2016), although both the two alkaline-earth metal Ca(II) and Mg(II) ions are fundamental for many living organisms, they can also increase the antimicrobial activity of MH/GG composite hydrogels. Indeed, they are also necessary to selectively destabilize and destroy cytoplasmic membranes of MDR or wt S. aureus strains. This membrane-destabilization event likely occurs through their binding to cardiolipin, S. aureus’ major
lipid component also present in *S. epidermidis* (Luo et al, 2018) thus converting to negative its originally zero-intrinsic curvature.

Figure 5. Antibacterial activity of the hydrogels against *S. aureus* (A) and *S. epidermidis* (B). Biofilm viability after 24, 48 and 72 h. At each time point, all the tested specimens were effective in reducing biofilm viability in a significant manner in comparison with untreated controls (p<0.05, indicated by the *). Bars represent means and standard deviations.

3.7 Preliminary biocompatibility evaluations

3.7.1 Cytotoxicity

GG has been already described as a cytocompatible material for different purposes and in combination with other molecules (Koivisto et al., 2017), besides MH has been widely used in medicine. Moreover, according to the present literature, the free amount of the Ca\(^{2+}\) (Bronner 2001) and Mg\(^{2+}\) (Romani, 2011) ions detected in the release test were not sufficiently large to determine significant variations in cells homeostasis. However, at the best of our knowledge, this is the first time that GG is combined with MH and HNT at the same time. Therefore, considering that these
composite materials are aimed for tissue engineering, their cytocompatibility was firstly evaluated towards hMSCs, normally recruited after tissue damage. During the direct assay, hMSCs viability was evaluated after 1, 3, 5 and 7 days of culture onto the hydrogels surfaces (Fig.6C). Overall, each hydrogel type allowed cell growth, as a general increase in o.d. was detected for all samples over time. No significant differences in terms of viability of cells cultured on the four hydrogel types were observed, with values always higher than 80%. Thus, beyond their antibacterial effectiveness, the prepared hydrogels are suitable to host hMSCs colonization, as other hydrogels proposed for cartilage repair (e.g. fibrin glue (Deponti et al., 2013), hyaluronic acid (Ha et al., 2015) and methylcellulose (Cochis et al., 2017). Furthermore, the indirect assay aimed at the study of the potential biomaterial toxicity, overcoming the effect due to the lack of adhesive signals, which is common on polysaccharide-based hydrogels (Cochis et al., 2017). None of the hydrogel types negatively affected hMSCs viability, which was not significantly different between all samples and controls at each time-point (Fig.6D, p>0.05). Moreover, the viability of cells cultured on the gels was always higher than 90% compared to controls. These findings are very encouraging, as the investigated systems were effective in killing bacteria, but not toxic towards hMSCs.
Figure 6. Cytocompatibility evaluation. Direct cytocompatibility assay schematized in A. Stem cells viability was evaluated after 1, 3, 5 and 7 days after direct seeding onto specimens’ surface (C). No significant differences were noticed between the four hydrogel types. Bars represent means and standard deviations. Indirect cytocompatibility assay (schematized in B). Stem cells viability at 1, 3, 5 and 7 days (D). No significant differences were noticed comparing all the hydrogels with untreated controls (p>0.05). Normalized percentage viability was calculated considering untreated controls as 100%.

3.8 Chondrogenesis evaluation

3.8.1 Gene expression

After the validation of the in vitro cytocompatibility, chondrogenesis experiments were performed to test the hydrogels ability to support chondro-like matrix formation for further cartilage regeneration. All the produced materials were investigated in order to verify whether single ions or nanotubes-enriched composites could have represented an interference element during chondrogenesis in comparison with the same proceeding performed using the gold-standard
A polystyrene surface. Real-time PCR results are reported in Fig.7A-D. Chondrogenic genes COLII and ACAN were successfully expressed (Fig.7A-B) and no significant differences were observed between samples and control in terms of fold expression (p>0.05). The low expression of the osteogenic COLI gene (Fig.7B) confirmed that the cells correctly differentiated towards a cartilage-like matrix, as indicated by the positive COLII:COLI ratio (Fig.7D).

Figure 7. Chondrogenesis evaluation. hMSCs cultivated onto specimens’ surfaces successfully expressed chondrogenic genes collagen type II and aggrecan (A,C). No significant differences were detected between samples and control in terms of expression ratio (p>0.05). Accordingly, cells expressed low levels of the osteogenic gene collagen type I (B) in comparison with collagen type II, as shown in (D). PCR results were confirmed by histology (E). Scale bars in (E): 50µm.

This is an important confirmation of the cartilage-like matrix formation, since it is normally composed of 90% collagen-II and 10% other collagens (I-IV-V-VI-IX), that are very useful to stabilise the collagen-II fibril network (Fox et al., 2009). Moreover, according to real-time PCR results, cells seeded on hydrogels surfaces were positive for both Safranin-O and Alcian blue.
(Fig.7E), confirming a massive presence of GAGs and proteoglycans in the secreted extracellular matrix (Cochis et al., 2017).

4. Conclusions and future perspectives

This work confirmed the interesting features of the prepared Manuka honey-gellan gum hydrogels: 1) intrinsic antibacterial activity, evaluated against two MDR Staphylococci strains 2) suitable mechanical properties, with compressive moduli (from 116 up to 143kPa) even better than those of other natural hydrogels (from 10 to 60kPa) already described in literature (Song et al., 2015; Palumbo et al., 2015). Therefore, the composite hydrogels herein described, combining for the first time Manuka honey and gellan gum, provide useful mechanical and antibacterial features for cartilage repair. Moreover, no cytotoxic effect of the hydrogels was observed when human mesenchymal stem cells were seeded on the gel surfaces. In addition, after 21 days of culture, chondrogenic differentiation occurred on hydrogels without differences with the control substrate. Interestingly, all the gels showed a microscopic porous internal architecture upon drying, thus paving the way for future studies in which cells will be allowed to colonise the inside of the hydrogels by fluidic stimulation. Overall, the satisfying mechanical and biological data encourage a deeper investigation of the developed hydrogels, in order to exploit them that have the potential to become implantable tools for cartilage repair.

Acknowledgements

This work was supported by Università degli Studi di Bari. Dr P. Gentile and Dr. A.M. Ferreira are members of the UK EPSRC Centre for Innovative Manufacturing of Medical Devices (MeDe Innovation, EPSRC grant EP/K029592/1). The authors would like to thank Mr. Stefano Sportelli, who kindly performed the methylglyoxal measurements, Dr. Stefano Andreoni (Novara Maggiore Hospital), who provided the MDR clinical isolates, Dr. Diletta Francesca Squarzanti who contributed to microbiological test.

Highlights

- Composite hydrogels based on gellan gum and Manuka honey have been prepared.
- The addition of halloysite nanotubes improves gel compressive modulus up to 143kPa.
- Hydrogels inhibit the proliferation of *S. aureus* and *epidermidis* clinical isolates.
- Chondrogenesis of human stem cells seeded on the gels was successfully achieved.
- The developed gel composites could be an innovative tool for cartilage repair.