The use of modal particles in Netherlandic and Belgian Dutch imperatives

1. INTRODUCTION.

In this paper, we examine the use of modal particles such as *even* ‘just’ in imperatives, as illustrated in 1. An imperative clause in Dutch has the finite lexical verb, such as *doe* ‘do’, in first position (see 1) and it lacks a subject. Speakers may produce modal particles or not but in both cases their utterances belong to what is considered standard Dutch in both Netherlandic and Belgian Dutch. (Note that the number in brackets is the speaker identification number given in the corpus of Spoken Dutch).

(1) *doe even deur dicht* (N01051)

 do just the door close

 ‘shut the door (will you?)’

We have selected the optionality of modal particles (henceforth MPs) as a linguistic variable whose context is determined both within and above the level of the sentence. On the one hand, the input to the variable is determined at the sentence level, that is, whether the imperative appears with or without an MP. On the other hand, the variable context is also constrained by pragmatic factors rather than by grammar (see Cheshire 2005), since MPs signify the rational and emotional position of the speaker towards what is being expressed and, therefore, MPs only acquire their meaning through interaction (Foolen 1993). Although grammars, such as the *Algemene Nederlandse Spraakkunst* (E-ANS), give examples of fixed meanings in the use of MPs, their meaning is in fact emergent through situated interactions between interlocutors. To fully analyse patterns of variation in the use of MPs in imperatives,
it is thus necessary to add a qualitative, interpretive dimension to the analysis (Cheshire 2005). Therefore, we analyse the imperative clause with or without a MP not only quantitatively by mixed effects modelling but also qualitatively according to the function of the kind of MP used in spoken interaction (cf. Cameron and Schwenter 2013: 467). Specifically, we focus on two types of MP in imperatives, MITIGATING and REINFORCING particles.

In this paper we address the following research questions: does the use of MPs in spoken Dutch imperatives show sociolinguistic stratification, and is their use geographically motivated? In order to answer these questions, we examine the occurrence vs. absence of MPs in imperatives in the Spoken Dutch Corpus (CGN). The CGN contains contemporary Dutch as spoken by adults in Flanders (Belgium) and the Netherlands between 1998 and 2004. Our analysis focuses on the spontaneous speech sub-corpora (face-to-face conversations (component a) and telephone dialogues (components c and d)), as it has been argued in the literature that MPs occur most frequently in these types of informal spoken registers (see e.g. van der Wouden 2002: 24-25). Our data set comprises of 1,714 imperatives produced by 629 speakers. The sociolinguistic variables annotated in the CGN, and hence inevitably included in our analysis, are men versus women (biological gender), age and education level, occupation level, interlocutor (i.e. the person the utterance is addressed to). The geographic distribution of MPs can also be examined since the CGN is annotated for region: the Netherlands (NL) versus Flanders (VL, Dutch speaking Belgium).

The abovementioned research questions are important, since answers will not only shed light on the use or non-use of MPs but also what is considered its usage norm in a pluricentric language as Dutch spoken in the Netherlands and Belgium. Furthermore, our research sheds light on the limits of using already existing large corpora like the CGN when examining the social distribution of linguistic phenomena. As researchers, we are tied to the demographic
categorisations that are decided for research in the CGN, such as binary men-women categorisations or education and occupation levels. These categorisations are inherently essential and although these categories may outline general patterns of language use they, as Eckert (2014) argues, may not offer a-priori explanations for patterns found. The challenge for linguists, therefore, is whether we have to look for explanations beyond the given demographic factors in the CGN.

The paper begins with an overview of MPs in spoken Dutch and their various functions when used in imperative utterances. Particular focus is placed on whether a particle has a mitigating or reinforcing function (section 2). Section 3 outlines the methodology used for data collection and analysis: i.e. the type of imperatives collected; the method of collection; the sociolinguistic variables included in the analysis. Section 4 discusses the statistical approach used to analyse the data, and the results are presented. Finally, Section 5 presents a discussion of the results and the implications of our findings for wider sociolinguistic research dealing with a-priori demographic factors in a given corpus.

2. THE USE OF MODAL PARTICLES IN IMPERATIVES

MPs are small words that are often used in the spoken language to convey a variety of attitudes such as uncertainty, politeness and urgency (van der Wouden 2002: 21). Superficially, they have the same form as certain adverbs, but they do not have the meaning that is normally associated with those adverbs. For instance, as an adverb even means ‘briefly’, and in a Dutch sentence such as Doe de radio even uit, where even is stressed, this will be the interpretation given: ‘Turn off the radio just for a minute.’ (Vismans 1994: 2). By contrast, if the word radio is stressed, and not even, the temporal meaning associated with the adverb is lost and the function of even is to make the order or request less urgent and/or more
polite: ‘(Just) turn off the radio/Turn off the radio (will you?)’. The bracketed words in the English translation give suggestions of possible ways of conveying the meaning of MPs but often they are left untranslated in English, as English does not usually use particles in this way. Indeed, MPs are notoriously difficult to translate into any language because they are context-dependent and can have many possible translations depending on the nuances that the speaker wants to convey in a given situation (see e.g. Vandeweghe 2010).

MPs have in common that they are almost always unstressed and appear exclusively in the Mittelfeld: i.e. between the main verb and the final non-finite verb(s) in main clauses, or between the subject and verb in subordinate clauses. This distinguishes MPs from discourse particles, such as hé, hoor, joh (‘hey’, ‘you know’), which usually appear in a peripheral position in the sentence: e.g. Stikstof is een gas, hoor! ‘Nitrogen’s a gas (you know)!’ (van der Wouden 2002: 25). MPs can also be distinguished from focus particles, such as alleen ‘only’, zelfs ‘even’, since focus particles only modify a particular part of the utterance, e.g. a noun phrase or a prepositional phrase (e.g. Jip speelt alleen met autootjes ‘Jip plays only with cars’, (van der Wouden and Caspers 2010: 53), whereas MPs modify the whole utterance: e.g. Doe je trui maar uit ‘Take your jumper off (will you)/Just take your jumper off.’ (van der Wouden and Caspers 2010: 53).

The Algemene Nederlandse Spraakkunst (ANS) demonstrates how inserting a specific MP into an imperative sentence allows the speaker to change the nuance of the utterance. Consider the following ways of expressing the instruction ‘give those books here’ (E-ANS: 8.3.2).

(2) a. *Geef die boeken hier.* (order)
 b. *Geef die boeken eens hier.* (friendly request)
 c. *Geef die boeken maar hier.* (reassuring and friendly request)
d. *Geef die boeken nou hier.* (request expressed with impatience)
e. *Geef die boeken toch hier.* (request expressed with irritation or impatience)

It should be noted, however, that the interpretations of the example sentences given in the ANS (here in brackets) should be treated as general guidelines only. The actual meanings and functions of the particles only become clear when one hears them being used in their wider context. For example, *geef die boeken maar hier* may often be used in a reassuring and friendly way; yet if someone is damaging books and the speaker wants him/her to stop, he/she can use that same utterance to express anger or irritation.

Vismans’ (1994) investigation of the use of MPs in directives\(^4\) divides the particles into two opposing groups: MITIGATING particles (e.g. *maar, even*) which usually weaken the force of the speech act and REINFORCING particles (e.g. *dan, nou*) which usually strengthen the force of the speech act. Following Searle (1976) and Leech (1983), Vismans explains why MPs play a particularly important role in directives: the illocutionary goal of a directive is to induce the interlocutor to perform an action, often for the benefit of the speaker, which could compete with the overarching social goal of ‘establishing and maintaining comity’ (Leech 1983: 104ff). Indeed, directives could be seen as ‘face-threatening acts’ which may need to be counteracted by taking ‘redressive action’ (Brown and Levinson 1987). For instance, a directive in the form of a bare imperative such as *Lend me a fiver* could be considered face-threatening by the interlocutor. By contrast, if a directive is ‘softened’ with, for example, a term of endearment and/or an offer of reassurance, e.g. *Can I borrow five pounds from you, dear? I’ll pay you back tomorrow*, this shows that the speaker is acknowledging the threat in the face-threatening act and attempting to counteract it (Brown and Levinson 1987: 69-70). Vismans (1994: 26-27) argues that mitigating particles in Dutch perform a similar redressive function.
2.1. MITIGATING PARTICLES

The general function of mitigating particles is to weaken the force of the speech act. Common sub-functions of mitigation are non-assertiveness, doubt, indefiniteness, negativity, insignificance, generality and politeness (Vismans 1994: 58–59, 69). The very frequent maar, for example, has been argued to have a restrictive character when used as a focus particle: i.e. meaning ‘only’, ‘merely’ (e.g. Jan is maar officier ‘John is only an officer’ (Foolen 1993: 149)), and this can also be seen in its use as an MP. De Vriendt and van de Craen (1984: 58) state that maar in imperative constructions often has a trivialising function: by inserting it into a directive the speaker is giving the impression that the action to be carried out is of little consequence. Maar can also have the function of giving permission, or making a suggestion (van der Wouden 2002: 25), which also mitigates the directive. Consider the following examples of imperatives with maar (3a) contrasted with similar constructions without maar (3b). These examples are taken from the data set that we are using in our current analysis, collected from the CGN.5

(3) a. geef mij dat jasje maar (N05057) (just) give me the jacket
 probeer ’t maar te visualiseren (N05000) (just) try to visualise it
 zet ’m maar uit (N01249) (just) turn it off
 laat die kaartjes maar (V40095) (just) leave the tickets

b. geef hier (N05176) give it here
 probeer dat (N01238) try that
 Ruud zet de TV uit (N01051) Ruud turn off the TV
In 3b, the imperatives are direct, containing no mitigating particle. By contrast, in 3a, the use of *maar* expresses different nuances, e.g. suggestion, permission, trivialisation, all of which have in common that they mitigate the utterance. We have translated *maar* with ‘just’ here, although other translations would be possible, depending on the context: e.g. ‘give me the jacket, if you like’; ‘do you want to give me the jacket’ (see Vandeweghe 2010 on the difficulty of translating MPs).

Another common MP that has been described in the literature as having a mitigating function is *even* (including its many variants: e.g. *effe, effens, effetjes, eventjes, effekes, efkes*). As an adverb, *even* indicates short duration (e.g. ‘briefly’), and this temporal aspect can still be part of the interpretation of the MP *even* if the action expressed by utterance is of short duration anyway: e.g. *Kun je me even helpen?* (Vismans 1994: 70) ‘Could you (just/briefly) lend me a hand (for a minute)?’ For situations of longer duration, however, *even* is used to indicate that the required action will not need a lot of effort to be carried out, the temporal aspect having been lost: e.g. *Kun je me even helpen met het installeren van mijn computer* (Vismans 1994: 70) ‘Can you (just) give me a hand with installing my computer?’ In this sense it is similar to *maar* in that it suggests that the action to be carried out is of little significance. Consider the examples below in which imperatives mitigated by the use of *even* (4a) contrast with similar, more direct, utterances using the bare imperative (4b). These examples all denote actions of relatively short duration, therefore the temporal aspect of *even* could (partly) be present in the interpretation of the particle.

(4) a. *ga effe een kopje koffie halen* (N08161) go and fetch a cup of coffee (will you?)

 doe even de deur dicht (N01051) shut the door (will you?)
leg je computerboekje even weg (N01025) (just) put your computer book away
blijf even boven (N08240) (just) stay upstairs (a minute)
laat effe weten als je komt (N08102) (just) let me know if you're coming

b. ga naar huis (N01207) go home
doe de tuindeuren open (N01049) open the garden doors
Pieter leg neer (N01063) Peter put it down
blijf aan de lijn hangen (N05064) stay on the line
laat 't me weten of je vrij bent (N05091) let me know if you're free

Eens, often pronounced es and transcribed as ns (or een keer/ne keer in Belgian Dutch, which has the same function) is initially treated as a reinforcing particle by Vismans (1994: 62-63) on the grounds that it is often used to denote temporal specificity. For instance, he argues that a speaker issuing the directive Kom eens hier ‘Come here, will you’ wants the hearer to come immediately (Vismans 1994: 63), which indicates that the temporal MP eens has a reinforcing function. Of course, this depends on the context of the utterance and is not always true.6

Moreover, Vismans (1994) points out that the historical development of eens ties in with that of other reinforcing particles such as toch and dan, which are attested earlier than the mitigating particles. Having said that, on the basis of results of an experiment that he carried out, in which native speakers of Dutch had to rate the politeness of directives with and without MPs, Vismans (1994: 212-214) notes that imperatives with eens were felt to be less forceful than bare imperatives. Interestingly, the interpretation of the MP appeared to be dependent on the type of directive used: interrogatives such as Kun je de deur dichtdoen? ‘Can you shut the door’ were felt to be reinforced by the addition of eens in Visman's study;
modal expressions such as *Je moet de deur eens dichtdoen* could be understood as either mitigated or reinforced, depending on the context, and imperatives such as *Doe de deur dicht* ‘shut the door’ were felt to be mitigated by *eens*. Thus, the interpretation of the MP depends on the strength of the speech act itself, with imperatives being the most forceful illocutions and interrogatives the least forceful, according to Vismans (1994: 214-215).

Broadly speaking, the research literature on particles and descriptive grammars of Dutch treat *eens* as a mitigator: e.g. the ANS states that it can turn a directive into a ‘friendly request’ (E-ANS: 8.3.2); the WNT (*Woordenboek der Nederlandsche Taal*) states that *eens* lends a directive a ‘soothing or co-operative character.’ Jansen (1992: 65-66) puts *eens* on a par with *even*, as can be seen in the following example: *Bekijk u eerst 'ns op uw gemak de folder. En vult u daarna even de vragenlijst in.* ‘First (just) look at the folder at your leisure. Then (just) fill in the questionnaire.’ Similarly, Hendriks and Le Pair (2004: 24) classify *eens* as an ‘understater’, within the general category of mitigators, including *maar* and *even*. The following examples from the CGN demonstrate the use of *eens* as a mitigator (5a) contrasting with similar, more direct, utterances without *eens* (5b).

(5) a. maak die 'ns groot (N01259) (just) enlarge that one, or isn't it possible
dertel jij dat 'ns dan kan ik even you (just) tell the story so I can carry
dooreten (N01015) on eating
schat doe dat 'ns niet (V40038) darling don't do that (will you)
nieuwe gerechten? geef 'ns een new dishes? (just) give an
voorbeeld? (N03145) example?
kem 'ns hier (N01036) come here (a minute)

b. maak nu die twee kolommen (N01045) make these two columns now
vertel wat over je spel dan (N01171) say something about your game then
doe mij een thee (N01106) do me a tea
geef mij wat koffie (V60586) give me some coffee
kom hier (N01258) come here

The other mitigators mentioned in Vismans (1994), *misschien ‘perhaps’* and *soms ‘by any chance’* did not occur in our data set, as they do not tend to combine with imperatives. However, there were some tokens with *lekker ‘nice’* (N=15) which, when used in directives, suggests to the interlocutor that the requested action is for his/her own enjoyment (see WNT: *LEKKER 6.0*). Thus, *lekker* can also be classified as a mitigating particle.\(^8\)

\[(6)\] blijf maar lekker liggen (V90577) (just) carry on having a nice lie down
ga lekker in mijn bed liggen ik slaap hier go and have a nice lie down in my bed
op de bank hè (N05097) I’ll sleep here on the couch

The first example in 6 shows *lekker* occurring together with *maar*. Indeed, it is not uncommon for MPs to occur in clusters, and a number of imperatives in our data set demonstrate this (i.e. 12.8% of tokens contain two mitigating particles and two tokens contain three).\(^9\)

\[(7)\] laat ze d'r maar 'ns goed naar kijken (N08108) (just) let her have a good look at it
ja doe 'ns even rustig (N01052) yes (just) calm down (a minute)
schrijf maar 'ns effe op (N01262) (just) write it down (a minute)
2.2. REINFORCING PARTICLES

The most frequently occurring reinforcing particles in our data set are *dan*, *nou* and *toch*, although it must be noted that these occur much less frequently than mitigating particles (5% of utterances occur with a reinforcing particle as opposed to 60% with a mitigating particle). This is probably due to the fact that our study concentrates on direct imperatives, which, as argued in 2.1 above, are forceful illocutions in themselves and speakers feel little need to reinforce them further. This is illustrated in Vismans’ (1994: 214-215) experiment in which listeners had to judge the forcefulness of different directives. His results show that reinforcers were most effective in weaker directives such as questions (*Kun je de deur dichtdoen?* ‘Can you shut the door?’) whereas in imperatives they were often judged to be no more forceful than a bare imperative.

As an adverb, *dan* refers to time, e.g. *Ik ga morgen naar Amsterdam - ben jij daar dan ook?* ‘I’m going to Amsterdam tomorrow - will you also be there then?’ and it also has a non-temporal use in conditionals in the sense of ‘in that case’: e.g. *Als je aan alle voorwaarden hebt voldaan, dan mag je gaan* ‘If you have met all conditions, then you may go’ (Vismans 1994: 61). Vismans classifies *dan* as reinforcing when used as an MP, as it usually lends weight to the imperative (the temporal aspect having been lost). Indeed, it is often used to express impatience on the part of the speaker. Consider the examples in 8 below.

(8) ja verdomme doe je voordeur dan dicht (N08111) yes, damn it, close your front door (then)
 allee zet dat stil dan (V40192) come on, switch that off then (referring to
 mobile phone ringing)
Contrast e.g. *doe de tuindeuren open* (N01049) ‘open the patio doors’, without a particle.

Similarly, *nou* (more formally *nu*, and Belgian Dutch *nu*) also shares its form with a temporal adverb, meaning ‘now’: e.g. *We gaan nu koffie drinken* ‘We’re going to drink coffee now’ (Vismans 1994: 64). Vismans argues that the sense of immediacy of *nou* gives the word a reinforcing effect when used as an MP, although in most imperatives it has lost its temporal meaning. Its function now is ‘to give more emphasis to an adhortation, an injuction or a wish’ (Van Dale (1992:1963), cited in Vismans 1994: 64). The following examples show *nou* being used as a general reinforcer.

(9) *doe die postzegel nou in je portemonee* (N01147) (now) put that stamp in your purse

 doe dat nou niet (N05050) don’t do that (now)

Contrast *doe dat niet* (N08070) ‘don’t do that’ without a particle.

Toch shares its form with a modal adverb that is often used to counter assumptions: e.g. *Al is hij maar kapper, hij is toch geleerd* ‘He may only be a barber, but he’s a scholar all the same’ (Vismans 1994: 67-8). As an MP it is not used to contradict, yet it has retained its assertive nature. According to the WNT, it is used to add force to a directive: e.g. *Sta toch stil, alsjeblieft* ‘(Now) keep still, please’ (WNT *TOCH 5.*), and this is often coupled with an expression of irritation or impatience (E-ANS 8.3.2). Consider the examples with *toch* in 10, the first of which shows two reinforcing particles being used together. (See section 3 below for the discussion of MP clusters).

(10) *maak het nou toch* (N01250) (just) fix it (then)
Contrast *maak een keuze* (N09091) ‘make a choice’ without a particle.

3. Methodology. Data Collection and Analysis

The Corpus of Spoken Dutch (Corpus Gesproken Nederlands, or CGN) is an electronic corpus of contemporary Dutch, as spoken by adults in the Netherlands and Flanders, spanning the years 1998 to 2004, comprising around nine million words. Table 1 provides an overview of the sub-corpora investigated, giving the numbers according to the design, where NL denotes data from the Netherlands and VL from Dutch-speaking Belgium (Vlaanderen). One can see from the table that the majority of data comes from Netherlandic Dutch, which reflects the fact that there are more speakers of Dutch in the Netherlands than in Belgium.

Table 1: Spontaneous speech components of the CGN.

[INSERT TABLE 1 HERE]

An initial search of imperative utterances was carried out, using verbs that frequently occur in this form: *komen* ‘come’, *gaan* ‘go’, *geven* ‘give’, *nemen* ‘take’, *blijven* ‘stay’, *wachten* ‘wait’, *zetten/leggen* ‘put’, *houden* ‘hold’, *vertellen* ‘tell’, *kijken* ‘look’, *zoeken* ‘look for’, *proberen* ‘try’, *doen* ‘do’, *maken* ‘make’, *laten* ‘let’, *bellen* ‘call’, *schrijven* ‘write’. Only direct imperatives were targeted (e.g. *Doe de deur* (MP) *dicht* ‘Close the door’), as opposed to interrogative, modal or infinitival directives (*Kun je de deur* (MP) *dichtdoen*? ‘Can you shut the door?’, *Je moet de deur* (MP) *dichtdoen* ‘You have to shut the door’, *De deur* (MP)
dichtdoen ‘Shut (infinitive) the door’). The rationale for the restriction of the analysis to direct imperatives is to avoid having utterances with different strengths of illocutionary force interacting with the use of MPs. As direct imperatives have the strongest illocutionary force (Vismans 1994: 214-215, Hendriks and Le Pair 2004: 27-28), the need for a mitigating particle may be greater in such contexts than in weaker directives such as interrogatives or infinitive constructions, which are perceived as less ‘face-threatening’ (see van Olmen (2009) for a discussion of infinitive directives). Similarly, it is likely that the need for mitigation is greater in imperatives expressing an order or request than, for example, in invitations or advice expressed in the imperative form (e.g. maak je geen zorgen, er is nog tijd (V40186) ‘don’t worry, there's still time.’). Thus, our analysis concentrates on direct imperatives expressing an order or request. We recognise that this is a somewhat restrictive approach; however the inclusion of different types of directive would make the variation too complex to be able to do an effective comparison of the use of MPs.

Over 2,000 utterances were initially collected: a mixture of bare imperatives and imperatives co-occurring with a modal particle (or particles). The main criterion for the inclusion of an utterance in the final analysis was that the context allowed variation. For instance, in many contexts, utterances optionally occurred with or without a particle, which suggests that the use of the particle was informed by the speaker and situational interaction: e.g. Geef mij dat jasje maar (N05057) ‘(just) give me that jacket’ versus Geef hier (N05176) ‘give it here.’ This was not the case, however, in many idioms and set phrases. In such utterances the choice of MP (or bare imperative) appears to be fixed. Westerheide (1986: 154) and Foolen (1984: 73) discuss the conventionalised use of MPs in phrases such as reken maar! ‘you bet!’ (literally: ‘count’ MP) and argue that such utterances should be treated as ‘conversational routines’ (Westerheide 1986: 155). In these contexts, the use or absence of an MP is a lexical rather than a pragmatic matter, and consequently such utterances were
excluded from our analysis. The benefit of analysing “spontaneous unplanned speech” is the ability to come across “prefabricated expressions” (Cheshire 2005:81) that would be missed when dealing with intuitions. (Cornips and Gregersen 2016). Examples of frequent set phrases which did not provide a variable context in our data set are laat maar ‘never mind’, laat maar zitten ‘forget it’, doe maar ‘go ahead’, which almost exclusively collocate with maar. Consider dialogue a and dialogue b in 11.

(11) a. wat wou je nog zeggen? (N05176)
what did you want to say?
 oh nee laat maar (N01235)
 oh no never mind
 b. ik stuur u ze door (V60760)
 I'll send them on to you
 jawel ja doe maar (V60736)
 certainly yes go ahead

Other set phrases where variation appeared to be restricted are doe de groeten aan ‘give my regards to’ (e.g. doe de groeten aan iedereen (N08051) ‘give my regards to everyone’ and ga je gang (N05176) ‘go ahead’, which occur mostly without a particle.

Imperatives with non-propositional meaning, as in 12b-c, were also excluded. Consider the following examples.

(12) a. kijk 'ns even in die doos (N01024)
 (just have a) look in that box
 b. kijk als wij studeren moeten we wel zorgen
 look if we have to study we must
 dat we de zondag vrij houden (N01221)
 make sure to keep the Sunday free
 c. kijk ik kan ook niet zo goed noten lezen
 look I can't read music very well
 (N08092)
 either
In 13a, the verb *kijken* carries the propositional meaning ‘to look’, whereas in 13b–c, it is used as a discourse particle (van der Wouden and Caspers 2010: 53). In this non-propositional usage, its aim is to focus the attention of the hearer on the utterance to come rather than requiring him/her to look at something. *Kijk* also appears frequently in the expression *kijk (eens) aan*, which is used to express surprise or admiration, rather than denoting the lexical meaning ‘look at that’.

(13) overigens Cynthia is weer zwanger (N08261) by the way Cynthia is pregnant again
 kijk eens aan (N08262) well I never!

Similarly, the expressions *kom* and *kom op* ‘come on’ are often used (usually without a particle) as general exhortations rather than specifically denoting movement towards the speaker.

(14) kom op wees realistisch (N05132) come on be realistic
 kom bellen we maandag op (N01135) come on we'll ring up on Monday

Furthermore, there are a number of set expressions with *laten*, in the imperative form, plus *zeggen* which are frequently used as formulaic utterances: e.g. *laat ons zeggen, laat maar zeggen* ‘let's say’ (see 15). Again, these are pragmatic markers rather than true imperatives and therefore need to be excluded from the analysis.

(15) laat maar zeggen hij is niet meer bang voor
 mensen (N01269) let's say he's not afraid of
 ik heb vier jaar in Brussel op uh kamers gezeten I spent four years in Brussels in
3.1. Establishing the Sociolinguistic Variable

As the interpretation of MPs is dependent on the pragmatic context of the situation, each conversation was analysed in order to determine whether the particle could be interpreted as having a mitigating effect on the utterance (in the case of maar, eens, even, lekker) or a reinforcing effect (in the case of dan, nou, toch). Three investigators were involved in this part of the data analysis. Each person was tasked with verifying the decisions of the other two, and if there was any area of disagreement the utterance was excluded. As intonation plays an important role in the interpretation of illocutionary force (Risselada 1990: 4-5, Vismans 1994: 167), the CGN sound files were also consulted. As the default intonation pattern of an imperative does not show a rise at the end of the utterance, imperatives with a final rising intonation were considered marked and excluded from the analysis. It was felt that such cases would be likely to be interpreted as a question and therefore not have the usual force of an imperative (and therefore not require mitigation).

Similarly, the imperatives were examined in the context of the dialogue in which they occurred. In order to be confident that a particle is serving, for example, a mitigating function in a particular imperative, it is important to hear the preceding and following utterances. For instance, in most cases, even (effe) was found to be a mitigator. However, the excerpt in (16) shows that this was not always the case.

(16) a. N01218: ja, maar jullie zeiken ook andere groepen af jij zeikt ook studenten af
 N01217: hé fuck hè
 N01217: hé doe effe normaal hè
b. N01218: yes, but you also pick on other groups, you pick on students
 N01217: hey fuck
 N01217: hey get over yourself, ok?
 N01218: errr ooh
 N01216: hey don't talk to my girlfriend like that, right?

Speaker N01217's response to the criticism made by N01218, *doe effe normaal* ‘get over yourself’ contains a ‘mitigating’ particle but there is no evidence that the addition of *effe* mitigates this (somewhat aggressive) utterance, as indicated by the response of N01216, who feels the need to defend his girlfriend. Thus, imperatives containing particles that are usually mitigating or reinforcing but in the wider context turned out not to be fulfilling their usual function were excluded from the analysis.

Utterances containing two mitigating MPs (e.g. *kijk 'ns even in die doos* (N01024) ‘(just have a) look in that box’) or two reinforcing MPs (e.g. *maak het nou toch* (N01250) ‘(just) fix it (then)’), which made up 12.8% and 0.1% of utterances respectively, were double-weighted (and in two cases, where there were three mitigating particles, triple-weighted). In 7% of the imperatives initially collected, mitigating and reinforcing particles co-occurred (see 17). Such cases are particularly challenging for the analyst, as it is often difficult to determine the relative strength of mitigation and reinforcement. In some cases they appear to cancel each other out: for example in 17a the reinforcing nature of *nou* is mitigated by the inclusion of *'ns even*. In 17b, the encouragement expressed by *maar* can be seen as overlaid with a tinge of impatience by the addition of *nou*. On the other hand, the addition of *nou* in 17b can be seen
as reinforcing the following MP *maar* and therefore emphasising the mitigation. Thus, owing to the pragmatic complexity of such utterances, imperatives with a combination of mitigators and reinforcers were excluded from the analysis.

(17) a. *laat me nou 'ns even uitpraten* (N05069) (now) let me (just) finish speaking
 b. *ga nou maar verder* (N08011) (now) (just) carry on

In sum, after all non-variable, non-propositional and prosodically marked contexts had been filtered out, and the double weightings and removal of utterances with co-occurring mitigators and reinforcers had taken place, we were left with a total of 1,714 imperatives (1,211 in Netherlandic Dutch and 503 in Belgian Dutch). Figure 1 shows the proportions of imperatives with mitigating particles, reinforcing particles and no particle, which are included in the analysis.

Figure 1: % of utterances with mitigating particles, reinforcing particles and bare imperatives

[INSERT FIG 1 HERE]

The frequencies of the individual particles are set out in Figure 2, with the mitigating group on the left and the reinforcing particles on the right. *Eens* includes, *ns, es, een keer, ene keer; even* includes *effen, effens, effe, effetjes, eventjes, effekes, efkes* and *nou* includes *nu*. It is clear from this chart that *maar* is by far the most frequently used particle in the data set.12

Figure 2: Frequencies of individual particles

[INSERT FIG 2 HERE]
Negative imperatives were also considered in the analysis, as these too provide a variable context for MPs. Such utterances are marked by the presence of a negator such as niet ‘not’, geen ‘no’, nooit ‘never’, nergens ‘nowhere’, niemand ‘no-one’, niets ‘nothing’.

\[18\] doe dat niet (V60648) \hspace{1cm} don’t do that
doe maar geen azijn d’r doorheen (N01217) \hspace{1cm} (just) don’t put any vinegar on it
ga nooit naar Coil kijken (V90526) \hspace{1cm} don’t ever go to see Coil

It should be noted, however, that negative imperatives are quite rare in this data set (N = 62, 3.6%).\(^{13}\)

Table 2 demonstrates how the total of 1,714 imperatives were distributed across the speakers in the corpus\(^{14}\)

Table 2: Frequencies of imperatives across speakers in the CGN

[INSERT TABLE 2 HERE]

N refers to the number of utterances produced: e.g. 733 out of a total of 1,714 utterances were produced by male speakers, 981 by female speakers. The corpus distinguishes three main age groups: 18-24 (young); 25-54 (middle), 55+ (old), (see Oostdijk 2000: 290 for discussion), as well as giving the age of each individual speaker (the youngest in the imperative data set being 18 and the oldest 87). Education is divided into three categories: the first, labelled here as ‘higher’, encompasses speakers with a university degree or other higher education diploma, and also speakers with a higher school-leaving certificate roughly equivalent to the English Advanced Level (e.g. vwo in The Netherlands, *Diploma van Hoger Secundair*.
Onderwijs in Belgium). The second category covers mid-level educational qualifications roughly equivalent to the English GCSE and similar, more vocational, qualifications (e.g. mavo and mbo in the Netherlands, ASO in Belgium). Finally, the third category covers lower-level educational qualifications such as the vbo and lbo in the Netherlands, and the lager middelbaar onderwijs in Belgium, which are generally below the English GCSE level and include some lower-level vocational diplomas. Speakers who left school with no qualifications are also assigned to this category. Note that there is a particularly striking imbalance in the area of education, where 64.0% of the total number of utterances are produced by speakers with a higher education background (compared to only 4.3% of speakers with lower education). Such imbalances are due to the composition of the GCN: the majority of participants in the project were educated speakers.

Moreover, the corpus also provides information on speakers’ employment and distinguishes between different occupational levels. In our data set, occupations are marked from 1 to 7 in line with the CGN measures given for the Netherlandic speakers. Thus, roughly speaking, high ranking professionals and directors are classed as ‘1’, teachers, lecturers and managers as ‘2’, white collar workers (e.g. secretaries, office workers) as ‘3’, manual workers as ‘4’, students as ‘6’ and housewives/-husbands as ‘7’. (There were no speakers classified as ‘5’ in our data set). Figure 3 shows the number of imperatives produced by speakers in each occupation level.

Figure 3: Occupation levels

[INSERT FIG 3 HERE]

As the occupation of each speaker is noted in the corpus, we considered the possibility that some professional practices might ‘require’ the use of mitigating particles more than others,
based on the assumption that mitigating particles in Dutch serve as politeness markers (de Hoop and colleagues 2016). This led us to create our own classification beyond the existing ones ‘dictated’ by the CGN corpus, namely the grouping of speakers into service-oriented and non service-oriented occupations. We defined service-oriented occupations as those that require frequent interactive communicative practices in service encounters with clients, patients, customers, colleagues, pupils etc. In other words, the interaction can be seen as being between servers and servees (Friginal and Hardy 2014:128). In such contexts, politeness markers such as mitigating particles could be of more value than in non service-oriented contexts.

Table 3 illustrates the type of service-oriented occupations held by the speakers in our data set. 44.6% of utterances are produced by speakers with service-oriented occupations.

Table 3: Service-oriented occupations

[INSERT TABLE 3 HERE]

By contrast, occupations which are not typically service-oriented are shown in Table 4.

Table 4: Non service-oriented occupations

[INSERT TABLE 4 HERE]

In addition to the speaker variables listed above we also collected information on the interlocutor in order to determine whether the choice of addressee had any effect on the use of mitigating or reinforcing particles. It has been pointed out in the literature (e.g. Hendriks and Le Pair 2004) that speakers are often more polite and/or careful in their speech to an addressee who is either unknown to the speaker or who, socially, is in a position of power.
relative to the speaker (e.g. an employee speaking to an employer). In the spontaneous speech components of the CGN all interlocutors are known to the speaker, and most of the relationships have, in theory, an equal power balance (e.g. partner, friend, neighbour), although some relationships are hierarchical (parent-child). Figure 3 shows the number of utterances directed at each interlocutor. The term ‘partner’ refers to part of a couple, married or unmarried. ‘Child’ is defined as being the son or daughter of the speaker, not as a person under eighteen years old. In a small number of cases, ‘parent’, ‘child’ and ‘sibling’ refer to in-laws rather than blood relatives. Some interlocutor roles were not specified in the corpus, in particular, for the Belgian Dutch sub-corpus (hence the rightmost column). One can see from the chart that most of the speakers in our data set were conversing with a friend or a partner.

Figure 4: Interlocutor roles

[INSERT FIG 4 HERE]

Further data on interlocutors were also included in the analysis: specifically, we considered whether the interlocutor differed from the speaker in terms of biological gender, education or age (this latter measure was set at 20 years or more, in order to mark a difference in generation between speakers).

Finally, we also recorded whether the interaction took place face-to-face or on the telephone as, despite the fact that both situations are highly interactive, the conditions for the interaction are different since the speakers cannot see each other on the telephone, and this might have some effect on their use of pragmatic markers such as MPs (see Aijmer 2013: 49). In our data set, 1088 imperatives were produced in face-to-face interactions (63.5%) and 626 in telephone conversations (36.5%).
4. Statistical Analysis and Results

In this section, we investigate to what extent the constraints outlined in 3 above are significant in determining the choice of imperative used (i.e. with or without a mitigating particle, with or without a reinforcing particle) using mixed effects modelling. This is a statistical method that quantifies the simultaneous effects of several contextual predictors on a response variable. Specifically, the statistical package used for this was lme4 in R, as the mixed-effects model is particularly effective in this type of investigation, being designed to deal with both fixed and random effects (see Tagliamonte and Baayen 2013: 171).

Firstly, we carried out a logistic regression, entering the following variables as fixed effects:

- region (nl, vl)
- biological gender of speaker (female, male)
- age of speaker (young, middle, old)\(^{16}\)
- education (lower, mid, higher)
- occupation level (1 to 7)
- occupation (service-oriented, non service-oriented)
- interlocutor role (friend, partner, parent etc.)
- negative versus affirmative imperative
- situation (face-to-face, telephone)

The results are set out in Table 5 below.
Table 5: Predictors for the use of mitigating particles

Table 5 shows the main predictors that were entered into the analysis. If one examines the probability values in the rightmost column, one can see that region, negation, occupation and biological gender have a significant effect on the use of mitigating particles (i.e. their p-value is less than 0.05). The leftmost column shows the effects of the predictors as odds ratios, where numbers higher than one indicate a decrease in the odds of imperatives containing mitigating particles and numbers lower than one indicate an increase in the odds (1 indicates neither an increase nor a decrease). The size of each individual effect can be seen here: the lowest odds of mitigating particles being used is in negative imperatives. This is followed by region: Belgian Dutch speakers are less likely to use mitigating particles than their Netherlandic counterparts, and biological gender: male speakers are less likely to use mitigating particles than female speakers. Conversely, the other significant predictor, occupation, shows the opposite effect: speakers with a service-oriented occupation are more likely to use a mitigating particle than those in a non service-oriented occupation. The age, education and occupation level of the speaker, the role of the interlocutor, and the speech situation (face-to-face versus phone) are not significant.17

As region plays a significant role in the use of mitigating particles (64.8% of imperatives in Netherlandic Dutch contain a mitigating particle, as opposed to only 48.7% in Belgian Dutch), we built separate models for each region. These are shown in Tables 6 and 7.

Table 6: Use of mitigating particles in Belgian Dutch

[INSERT TABLE 6 HERE]
Tables 6 and 7 reveal that the significant effects we found in the combined analysis are not present in Belgian Dutch, which is the smaller of our two data sets. Conversely, removing Belgian Dutch from our analysis leads to an increase in effect size of the significant predictors in Netherlandic Dutch: negative, occupation and biological gender.

The model in Table 7 includes one random effect: ‘speaker’ (n=392), in order to ascertain whether individual speaker preference had any impact on the choice of imperative. The variance and standard deviation are 0.2456 and 0.4956 respectively, meaning there is not much variability between the speakers. If the model is refined by adding a second random effect, namely ‘verb’ (n=18), one can see that the significance of biological gender is reduced when testing the fixed effects. The significant variables are reported in Table 8.

If the models for Netherlandic Dutch in Tables 7 and 8 are compared, one can see that they are significantly different (p=0.001). The AIC and BIC values are smaller in the latter model (AIC = 1525.9, down from 1533.4; BIC 1617.7, down from 1620.1), and the concordance value is slightly higher (C = 0.75, up from 0.74) which suggests that the model presented in Table 8 has the better fit. Thus, it can be concluded that the two significant predictors of the use of mitigating particles in Netherlandic Dutch are negation (negative imperatives contain fewer mitigating particles than affirmatives) and occupation (speakers in service-oriented
occupations use more mitigating particles than those whose occupations are not service-oriented). The p-value for gender just misses significance.20

In order to compare the relationship between the two significant variables, we carried out a cross-tabulation, the results of which are given in Table 9.

Table 9: Cross tabulation of negation and service-oriented professions

\begin{tabular}{|c|c|}
\hline
Variable & Count \\
\hline
Negation & 123 \\
Service & 456 \\
Non-service & 789 \\
\hline
\end{tabular}

One can see from this that, although negation appears to be highly significant in determining the use of mitigating particles in imperatives, the small number of negative utterances in our data set means that they have little effect on the results for service-oriented versus non-service-oriented occupations. If all negative utterances are removed from the calculations one is still left with a highly significant result for occupation (p<0.001).

Finally, we tested the use of reinforcing particles against the predictors set out in Section 3 above. As was the case with the mitigating particles, the best fit model was achieved by adding two random effects: speaker and verb.21 The results are given in Table 10.

Table 10: Predictors for the use of reinforcing particles

\begin{tabular}{|c|c|}
\hline
Variable & Count \\
\hline
Region & 123 \\
Negation & 456 \\
Reinforcing & 789 \\
\hline
\end{tabular}

Table 10 shows that region and negation have a significant effect on the use of reinforcing particles, and the odds ratios show that these two variables show an increase in the likelihood of co-occurring with reinforcing particles. (Values less than one show a decrease). 10.7% of imperatives in Belgian Dutch contain a reinforcing particle, compared to 4.6% in
Netherlandic Dutch. 11.3% of negative imperatives contain a reinforcing particle (in both varieties), as opposed to only 4.4% of affirmatives.

It must be noted, however, that the analysis of reinforcing particles has considerably less statistical power than that of the mitigating particles. Utterances with reinforcing particles are not particularly frequent in our data set (5%, n=80), which means that numbers for some of the variables are very small. For instance, ‘education.low’ appears as almost significant in Table 10 and the odds ratios indicate that speakers with a low education level have higher odds of using reinforcing particles. However there are only 7 utterances with reinforcing particles in this group (total utterances for this group =73).

If one examines Netherlandic Dutch only, no significant sociolinguistic effects are found, although negation remains significant (p=0.048). For Belgian Dutch, the numbers are too small to test the variables effectively.

5. DISCUSSION

5.1. THE NETHERLANDS VERSUS FLANDERS IN THE USE OF PARTICLES

As described above, mitigating particles are used significantly less frequently in Belgian Dutch than in Netherlandic Dutch (i.e. in 48.7% of imperatives in Belgian Dutch, as opposed to 64.8% in Netherlandic Dutch). It is not clear why this should be the case, but it could be that restricting our search to direct imperatives, rather than including other types of directive, has prevented us from seeing the wider picture. That is to say, it might be the case that, instead of using mitigating particles, the Belgian Dutch speakers in the CGN corpus employ other ways to mitigate their directives, e.g. modal verbs, infinitives, participles and other polite (non-imperative) formulations, which our analysis has not covered.
Conversely, when it comes to reinforcing particles, Belgian Dutch speakers are more likely to use these in imperatives than their counterparts in The Netherlands. Again, a thorough investigation of all directives would be needed to account for this difference adequately. If, for instance, Belgian Dutch speakers prefer to use non-imperative directives more than Netherlandic Dutch speakers and only use imperatives when they need extra force, it is not unlikely that these imperatives might be accompanied by a reinforcer. Having said that, it must be borne in mind that our data set contains a relatively small number of reinforcing particles, therefore some caution is necessary when interpreting these results.

5.2. SOCIOLINGUISTIC VARIATION

The sociolinguistic variable that has proved to be significant in determining the use of mitigating particles in Netherlandic Dutch is occupation, specifically whether a speaker has an occupation that is service-oriented or not. Results show that speakers in service-oriented occupations use a significantly higher number of mitigating particles than those in non-service-oriented occupations when producing imperatives. Thus, it is probable that the use of MPs in imperatives is linked to politeness in professional server–servee encounters (Fringinal and Hardy 2014:128). According to Friginal and Hardy (2014:129): “An effective server is able to maintain a problem-solving focus throughout the interaction and gain the customer’s trust or patience by using polite and respectful language, focussed on the particular need(s) of the customer.” Indeed there is evidence that imperatives containing mitigating particles such as maar and even are judged by speakers to be more polite not only when compared to bare imperatives but also when compared to imperatives containing the word alsjeblieft ‘please’ (de Hoop and colleagues 2016). Imperatives with alsjeblieft are not judged as significantly different from bare imperatives. Thus, one can conclude that the use of mitigating particles in
imperatives is an important politeness strategy in spoken Dutch, and our data suggest that speakers in service-oriented occupations make good use of this strategy.

What is particularly interesting is that this study demonstrates that (at least some) speech patterns used in the workplace can be carried over to a person's private life. Our data set consists of spontaneous speech of an informal nature, where speakers are largely conversing with friends and family, and one would not necessarily assume a particular need for politeness in such interactions. Thus, it appears that the politeness strategies used in workplace interactions can become part of the speaker's general communicative practices.

With regard to negation, results clearly show that negative imperatives are significantly less likely to contain a mitigating particle than affirmatives. A possible explanation for this might be that the act of telling someone NOT to do something is deemed by the speaker to require more force than would be needed for a positive directive. This would also explain the significantly higher odds of a reinforcing particle co-occurring with a negative imperative than with an affirmative one.

6. CONCLUSION

In this paper we have addressed two research questions: does the use of MPs in spoken Dutch imperatives show sociolinguistic stratification, and is their use geographically motivated? With respect to geographical variation, mitigating particles are used significantly less frequently in Belgian Dutch than in Netherlandic Dutch (i.e. in 48.7% of imperatives in Belgian Dutch, as opposed to 64.8% in Netherlandic Dutch, p<0.001). Conversely, reinforcing particles appear to be used more frequently in Belgian Dutch (i.e. in 10.7% of imperatives in Belgian Dutch, compared to 4.6% in Netherlandic Dutch, p=0.04); however more research is needed in order to determine the true significance of this difference, as our
results for reinforcing particles have relatively little statistical power, owing to the small number of these MPs in our data set.

With respect to sociolinguistic stratification, our study demonstrates that the use of mitigating particles in spoken Dutch imperatives is sociolinguistically motivated. This is at least the case in Netherlandic Dutch, where the frequency of mitigating particles in imperatives is relatively high. Specifically, speakers in service-oriented occupations use significantly more mitigating particles than speakers in non service-oriented occupations, and we argue that this is a function of their need to be more polite in their role of server. However, as the data does not come from the speakers' workplace interactions but from informal conversations with friends, family and neighbours, we suggest that speech patterns of a speaker's professional life can be carried over into his/her personal life.

In order to uncover the significant sociolinguistic variable it was necessary to look beyond the a-priori demographic classifications given in the CGN. According to Eckert (2014: 529), “best practices in coding large corpora is how close can we get to explanation with the kinds of categories that are available for selecting and classifying speakers” and how to integrate these with what we know from sociolinguistic, qualitative research (see also Bamman, Eisenstein and Schnoebelen 2014: 147). Thus, although an initial analysis suggested that biological gender might play a significant role in the use of mitigating particles, the inclusion of the occupation variable ‘service vs non-service oriented’ provided us with the more significant result, and the best-fit model revealed that biological gender was not significant.

In sum, this analysis has attempted to go beyond simple demographic categories to explore how ideologies (for example, of service culture and commodification) correlate with observed variable practice. However, the argument that working in a service-orientated occupation causes people to use more pragmatic mitigation requires further support and
justification. It could be the case, for example, that people who tend to use pragmatic mitigation strategies are those who are more likely to be offered jobs in service-related industries. It is hoped that further research into the relationship between linguistic behaviour and discourse context will be able to shed some light in this area.
REFERENCES

Eckert, Penelope. 2014. The Problem with Binaries: Coding for Gender and Sexuality Language and Linguistics Compass 8 (11): 529–535.

TTT6: 153-167.

Wouden, Ton van der, & Johanneke Caspers. 2010. Nederlandse partikelbeschrijving in internationaal perspectief: waar zijn we eigenlijk en waar moet het toch naar toe?

NOTES

1 We are extremely grateful to Ton van der Wouden of the Meertens Instituut Amsterdam and Leiden University for his substantial contribution to this paper. We would also like to thank Angela Medendorp and Elijne van der Starre for their valuable input, and also the two anonymous reviewers of this paper.

2 See: http://lands.let.ru.nl/cgn/ehome.htm

3 Focus particles are usually found in the vicinity of the constituent they have scope over, but not always (see Hoeksema and Zwarts (1991)).

4 Here, the more general term ‘directive’ is used, as it not only denotes imperatives but also other forms of request, e.g. interrogatives (Will you shut the door?) and modal expressions (You have to shut the door).

5 Full information on data collection and analysis is given in Section 3.

6 *Kom ns hier* could also denote a threat: e.g. *Kom ns hier (als je durft), ik sla je verrot* ‘Come here (if you dare), I'll beat the shit out of you’ (example from anonymous reviewer).

7 This assertion is also made by Hendriks and Le Pair 2004: 27-28.

8 See also De Vriendt, Vandeweghe and Van de Craen (1991). Other MPs mentioned in the literature are gerust ‘rest assured’ and gewoon ‘simply’, the former of which did not occur in our data set. There were a handful of examples of gewoon (N=18). However, this MP is difficult to classify as mitigating or reinforcing, as it can have many different functions (see van de Craen and de Vriendt 1995). Thus, it was not considered here.

9 For the order of MPs in clusters, see McLelland and Braber (2010), which is also based on data from the CGN and discusses non-contiguous as well as contiguous clusters.

10 In her study of declarative sentences with toch, Schermer-Vermeer (1984) argues that the interpretation of this particle is particularly dependent on stress and intonation. This can also be true of *toch* in directives. For instance, van der Wouden and Caspers (2010: 53).
point out that toch in a sentence such as *Doe je trui toch uit* ‘Take your jumper off’ could express impatience or encouragement. See also Hogeweg and colleagues (2011).

This was done on the assumption that two reinforcers are more reinforcing than one and two mitigators mitigate more than one, as recently demonstrated by Andriessen (2018).

Note that we will not be entering individual particles as separate variables into the regression analysis, as most of these are too low in frequency to be statistically robust. Moreover, individual particles are subject to lexical collocational effects which could cause problems of colinearity in a regression model (e.g. *doen* and *vertellen* do not significantly differ in their ability to co-occur with a mitigating particle ($\chi^2(1) = 0.00$, p=1.000) but the choice of preferred particle is strongly influenced by the verb itself: *doen* collocates most frequently with *maar* whereas *vertellen* collocates most frequently with *eens*. See also van der Wouden (2002: 158) for a discussion of collocational effects.

Van Olmen (2009: 163) points out that a large proportion of negative directives use the infinitive rather than the imperative form (e.g. *niet doen*, as opposed to *doe dat niet* 'don't do that'), which might account for the small numbers of negative imperatives found here.

The total number of speakers in our data set is 629. The highest number of relevant utterances produced by one speaker is 17.

The Belgian sub-corpus uses a slightly different system (with more sub-divisions). Therefore we have had to modify this somewhat to bring it into line with the Netherlandic Dutch scale for our analysis.

We tested models with age groups against models with age entered as a continuous variable and found that the latter provided the best fit (see also Tagliamonte and Baayen 2012).

We also built models with additional predictors for the interlocutor, but these proved to be non-significant: biological gender of interlocutor (p=0.86), gender difference
speaker/interlocutor ($p=0.98$), age difference (older/younger/same: $p=0.71$, $p=0.95$),
education difference (higher/lower/same: $p=0.08$, $p=0.15$).

There is no variable ‘situation’ (face/phone) in the Belgian only analysis, as 98% of the utterances are face-to-face in this data subset.

The Akaike information criterion (AIC) is an estimator of the relative quality of statistical models for a given set of data. Similarly, the Bayesian information criterion (BIC) is a criterion for model selection among a finite set of models. The model with the lowest AIC and BIC is preferred. The index of concordance (C-value) measures how well the model discriminates between the two tested responses (in this case, plus versus minus mitigating particle). When C is equal to 0.5, classification performance is at chance. For a good performance, a model needs to be as close to 0.8 as possible (or higher) (see Tagliamonte and Baayen 2012: 156).

We also tested for colinearity (e.g. occupation and biological gender), yet found no significant correlations.

AIC = 555.5, BIC = 655.8, C = 0.85.

Gender $p=0.81$, age $p=0.21$, education low $p=0.11$, education mid $p=0.28$, interloc child $p=0.23$, interloc colleague $p=0.55$, interloc friend $p=0.98$, neighbour $p=0.76$, parent $p=0.41$, partner $p=0.75$, sibling $p=0.67$, situation $p=0.46$, occupation service $p=0.44$, occupation level $p=0.99$.

No sociolinguistic variable was significant in Belgian Dutch, which might have to do with our data set for Belgium being relatively small and the general tendency to use fewer mitigating particles in this variety.