
Simulation of Virtual Machine Live Migration in
High Throughput Computing Environments

Osama Alrajeh
School of Computing
Newcastle University

Newcastle upon Tyne, UK
o.alrajeh1@ncl.ac.uk

Matthew Forshaw
School of Computing
Newcastle University

Newcastle upon Tyne, UK
matthew.forshaw@ncl.ac.uk

Stephen McGough
School of Computing
Newcastle University

Newcastle upon Tyne, UK
stephen.mcgough@ncl.ac.uk

Nigel Thomas
School of Computing
Newcastle University

Newcastle upon Tyne, UK
nigel.thomas@ncl.ac.uk

Abstract—Virtual Machine (VM) live migration is one of the
strategic approaches that can be employed to reduce energy
consumption and increase the utilisation of a single computer in
large computing infrastructure. However, virtualisation in HTC
has received limited attention in the literature. In this paper, we
present an extension of an existing trace-driven simulation to
incorporate virtualisation. Furthermore, we implement the pre-
copy live migration algorithm to provide a test environment for
job live migration in HTC system. Our simulation provides the
total number of migrations and their overall time of migrations
as well as calculates the energy consumption of migrations during
its runtime. We validate our tool by presenting some outcomes
of simulation. We demonstrate that energy consumption of jobs
migrations may consume up to 10% of system total energy.

I. INTRODUCTION

Computer simulation is a powerful way of evaluating
complex systems and understand the reaction of the sys-
tems in the real world. As VM live migration becomes a
mechanism for reducing overall energy consumption in large-
scale computing by consolidating VMs onto fewer physical
machines, simulation assists to enhance the policies of VM
live migration decisions to gain more saving in energy and
better performance.

High Throughput Computing (HTC) is powerful for a large
number of jobs with a long period of execution time, where
jobs can be executed over a distributed set of computers. HTC
systems such as HTCondor [1], BOINC [2], and SGE [3] are
popular choices for academic as well as industry researchers,
to do complex computational tasks on existing, idle, shared fa-
cility (desktop grid) or dedicated resources. Since the resources
in HTC environment is shared usage, the HTC jobs might be
affected by other users. For instance, universities use students’
computer clusters as a resource pool for their HTC system
where HTC jobs can be executed on computers that are not
being used by students. There is a high probability that HTC
job can be interrupted when a user starts using the computer.
Such an interruption cause job eviction or suspension which
increase the power consumption and job makespan.

It is significant to run these long-running jobs in the most
energy-efficient machines to decrease the energy consumption.
However, the most energy-efficient machines might be not
available at the beginning of the HTC jobs initiation. Fur-
thermore, it is necessary to prevent the HTC jobs from being

evicted from the computer or suspended for a long time to
minimise energy waste and makespan of the jobs.

Virtual Machine (VM) Live Migration [4] refers to the
method of transferring running VMs between physical ma-
chines without impacting client processes or applications.
It has become a solution for managing tasks in large-scale
computing environments to accomplish the purposes of en-
ergy management, load balancing, fault tolerance, and zero-
downtime hardware maintenance. VM consolidation is a com-
mon technique used to reduce the energy consumption and
improve the utilisation in Cloud datacenters. Many VM con-
solidation algorithms have been introduced in the literature to
control the energy waste in Cloud environment. Therefore, we
find it necessary to adopt some of these algorithms by applying
them in HTC environments as well as proposing new VM
consolidation algorithms that work the most in HTC system.
By deploying the virtualisation into HTC-Sim, researchers
have the opportunity to develop and evaluate their algorithms
based on real data.

Virtualisation has previously been applied to HTC systems
such as HTCondor where VMs considered as jobs to be
executed [5]. The power of VM live migration could be used to
gain more saving in energy by migrating the jobs into energy
efficient machines when they become available. Moreover, it
can prevent the jobs from being evicted or suspended for a
long time due to user login by migrating them to other idle
machines. However, VM live migration in HTC system has
received a little attention in the literature. Existing research
has considered the use of the Checkpointing [6]–[9] in this
context to minimise the effect of jobs interruption on overall
performance and energy consumption of HTC systems.

Checkpointing is a well-known approach to achieve fault
tolerance by regularly storing snapshots of application state
into storage. In the event of failure, these snapshots can be
used to avoid repeating the execution of the task from the
beginning. However, some checkpointing algorithms could
lead to useless checkpoints which increase the overhead as
well as the energy consumption. Also, checkpoint might have
large latency which affects the overall performance of the
system. Implementing the migration in HTC systems to avoid
task’s failure by transferring the task to a safe node when the
current node of the task seems likely to fail, will reduce the

overhead as well as the energy consumption of the system.
In this paper, we propose a different approach in which we

use the ability of VM live migration to mitigate the energy
waste and the makespan of jobs in HTC environment. In order
to achieve this, we extend a trace-driven simulation HTC-
Sim [10] to support virtualisation, in particular, VM live mi-
gration. We implemented the pre-copy migration algorithm [4]
in the same manner as in the real world. The simulation
tracks the number of successful and failed VM migrations, the
time of VM migrations, and the energy consumption of VM
migrations. Additionally, the expansion of this simulation will
ultimately assist the development and evaluation of algorithms
for VM consolidation in large-scale computing.

The rest of this paper is organised as follows. Section
II discuss the related work. We introduce the simulation
environment in Section III. In Section V, we present two
scenarios to perform the live migration in our simulation. We
explain the outcomes of the simulation in Section VI before
concluding in Section VII .

II. RELATED WORK

A. Simulation Tools

The simulation of Grid and Cluster level has formed the
basis for many previous works such as SimGrid [11], Grid-
Sim [12], OptorSim [13], and Chi-Sim [14]. These tools
assist researchers in understanding the parallel and distributed
systems and evaluate new policies of managing tasks in
HTC. In addition, Cloud simulators such as CloudSim [15],
GreenCloud [16], iCanCloud [17], and MDCSim [18] can
determine the tradeoff between performance and cost as well
as the energy. Though, unlike our extinction to HTC-Sim,
the tools as mentioned above might not be ready to evaluate
VM consolidation techniques and policies for the purpose
of reducing energy waste in HTC environment. Also, our
simulation is unique in its capability to model live migration
in multi-use clusters with interactive users besides using real-
world workload traces.

B. Virtual Machine Consolidation

Clark et al. [4] purposed the concept of pre-copy live
migration algorithm. This algorithm copies and transfers the
memory pages of VM from the source host to the target host.
Then, when there are relatively few uncopied pages, the VM
get suspended on the source host, and the remaining pages get
transferred to target host. In this way, the VM can be migrated
from machine to another with minimal downtime.

As part of an attempt to lower energy usage and SLA
infringements, Beloglazov et al. [19] formulated algorithms
and policies linked to live migration and dynamic VM con-
solidation. The researchers drew on CloudSim instruments to
facilitate the assessment of their approaches. Initially, to carry
out the reallocation of the VMs, the physical machines were
categorised into the following two groups: overload and under
load machines. Following this, three distinct VM selection
policies were employed to determine the VM which needs
to be transferred from the present to the novel host. Although

useful insights were gathered from their experiment, it should
be noted that the researchers’ method was not appropriate to
ensure that the VM live migration costs were lower than the
advantages gained.

In approaching possible solutions to the issue of work-
load consolidation, Feller et al. [20] employed the multi-
dimensional bin-packing (MDBP) problem. In addition to this,
by taking inspiration from the natural world, the researchers
formulated a new workload consolidation algorithm which
extended the Ant Colony Optimisation (ACO) algorithm linked
to energy efficient cloud computing. The central objective of
the researchers was to lower the physical machine requirement
for computing current workloads. To facilitate the assess-
ment of their method in view of the limiting factors of the
CloudSim toolkit, a Java-based simulator was formulated by
considering the ACO in relation to the First-Fit Decreasing
algorithm (FFD). After the simulation was completed, the
findings illustrated that ACO was far more conducive to energy
conservation than FFD, but the key piece of information
missing from their findings was migration cost.

III. SIMULATION ENVIRONMENT

In this paper, we implement virtualisation and the pre-
copy live migration algorithm into HTC-Sim simulator. HTC-
Sim is a Java-based trace-driven simulation for simulating
multi-use resources shared with interactive users as well as
dedicated resources. Moreover, the tool is based on a real
dataset collected from Newcastle University HTCondor system
in 2010.

A. Datasets

The Newcastle University employed HTCondor to provide
a high throughput computing environment to its researchers.
The HTCondor pool contains 1400 desktop computers spread
through 35 clusters on campus. When a student login to the
computer, the job on that computer get evicted and rejoin the
queue of the HTCondor to be restarted on another machine.
Figure 1 shows the number of user logins per day during 2010
while Figure 2 illustrates the number of HTCondor jobs in the
same period.HTC-SIM: A TRACE-DRIVEN SIMULATION FRAMEWORK 3277

Date
Jan Feb Mar Apr May Jun Aug Sep Oct Nov Dec

N
um

be
r

of
 u

se
r

lo
gi

ns
 p

er
 d

ay

0

1000

2000

3000

4000

5000

6000

7000

8000

9000

10000

Figure 5. Interactive user logins per day for 2010.

Date
Jan Feb Mar Apr May Jun Aug Sep Oct Nov Dec

N
um

be
r

of
 S

ub
m

is
si

on
s

1

10

100

1000

1000

10000

Figure 6. HTCondor workload trace for 2010.

5.4. Preparation of the HTCondor logs

Once a job has finished within HTCondor – that is, either completed or been terminated –
its ClassAd is archived within the history log. These ClassAds can be retrieved through the
condor_history -long command. In general, HTCondor is normally configured to only keep
the previous N jobs that have finished (where N is a configurable value). Also, in terms of sim-
plicity for HTCondor, the ordering of these records is based on completion times of the job rather
than submission time. Regular capturing of the history log can be used to overcome the first issue –
although this will lead to duplicate ClassAds held in consecutive captures. The second issue can be
overcome by post-processing the ClassAds to reorder them by submission time. This functionality,
along with functionality to remove duplicate records, is provided by a small tool. Once prepared, the
ordered ClassAds can be fed into HTC-Sim via the HTCondor pluggable policy implementation.

The number of HTCondor jobs submitted per day in 2010 is shown in Figure 6. A total of 561 851
jobs were submitted over the whole year with a mean submission rate of 1454 jobs submitted each
day. Unlike the interactive user logins per day, there is no clearly visible pattern within these data.

Further information about the execution of a HTCondor job, which is normally only made avail-
able to the submitter of the job, is available within the HTCondor system. This contains information
such as periodic recording of the memory and disk usage of the running job, a complete log of all
resources that the job was allocated to (not just the last allocation), along with records of individual
job suspensions and checkpoints. Modification to the configuration of the central HTCondor config-
uration script allows this information to be collected centrally for all jobs. The listing presented in
Listing 1 shows the configurations required to achieve this. We have been centrally collecting this
level of job statistics since December 2012.

EVENT_LOG = /some/file/path
EVENT_LOG_USE_XML = True
EVENT_LOG_MAX_SIZE = 52428800
EVENT_LOG_MAX_ROTATIONS = 3

Listing 1. HTCondor configuration options to enable centralised usage collection.

Copyright © 2016 John Wiley & Sons, Ltd. Concurrency Computat.: Pract. Exper. 2016; 28:3260–3290
DOI: 10.1002/cpe

Fig. 1. Interactive user logins per day in 2010 [10].

A total of 1,229,820 user logins were occurred over 2010,
and the total number of submitted HTCondor jobs was
561,851. Where we can see a high probability for a job to

HTC-SIM: A TRACE-DRIVEN SIMULATION FRAMEWORK 3277

Date
Jan Feb Mar Apr May Jun Aug Sep Oct Nov Dec

N
um

be
r

of
 u

se
r

lo
gi

ns
 p

er
 d

ay

0

1000

2000

3000

4000

5000

6000

7000

8000

9000

10000

Figure 5. Interactive user logins per day for 2010.

Date
Jan Feb Mar Apr May Jun Aug Sep Oct Nov Dec

N
um

be
r

of
 S

ub
m

is
si

on
s

1

10

100

1000

1000

10000

Figure 6. HTCondor workload trace for 2010.

5.4. Preparation of the HTCondor logs

Once a job has finished within HTCondor – that is, either completed or been terminated –
its ClassAd is archived within the history log. These ClassAds can be retrieved through the
condor_history -long command. In general, HTCondor is normally configured to only keep
the previous N jobs that have finished (where N is a configurable value). Also, in terms of sim-
plicity for HTCondor, the ordering of these records is based on completion times of the job rather
than submission time. Regular capturing of the history log can be used to overcome the first issue –
although this will lead to duplicate ClassAds held in consecutive captures. The second issue can be
overcome by post-processing the ClassAds to reorder them by submission time. This functionality,
along with functionality to remove duplicate records, is provided by a small tool. Once prepared, the
ordered ClassAds can be fed into HTC-Sim via the HTCondor pluggable policy implementation.

The number of HTCondor jobs submitted per day in 2010 is shown in Figure 6. A total of 561 851
jobs were submitted over the whole year with a mean submission rate of 1454 jobs submitted each
day. Unlike the interactive user logins per day, there is no clearly visible pattern within these data.

Further information about the execution of a HTCondor job, which is normally only made avail-
able to the submitter of the job, is available within the HTCondor system. This contains information
such as periodic recording of the memory and disk usage of the running job, a complete log of all
resources that the job was allocated to (not just the last allocation), along with records of individual
job suspensions and checkpoints. Modification to the configuration of the central HTCondor config-
uration script allows this information to be collected centrally for all jobs. The listing presented in
Listing 1 shows the configurations required to achieve this. We have been centrally collecting this
level of job statistics since December 2012.

EVENT_LOG = /some/file/path
EVENT_LOG_USE_XML = True
EVENT_LOG_MAX_SIZE = 52428800
EVENT_LOG_MAX_ROTATIONS = 3

Listing 1. HTCondor configuration options to enable centralised usage collection.

Copyright © 2016 John Wiley & Sons, Ltd. Concurrency Computat.: Pract. Exper. 2016; 28:3260–3290
DOI: 10.1002/cpe

Fig. 2. HTCondor jobs submission in 2010 [10].

be interrupted by an interactive user. We can stop jobs from
being disturbing by migrating them to resume their execution
on other machines. To achieve this, the HTCondor jobs that run
in a closed cluster can be moved to other idle computers just
before its opening time for students. Also, when a user logs
in while HTCondor task is running, the task can be migrated
to another machine.

B. Migration Model

The simulator requires three files in order to perform. The
first file contains the policies configurations to needs to be
evaluated by the simulation. The trace log of HTCondor
workloads is included in the second file. The workloads
records specify the submission time of the jobs, their duration,
and their memory usage at the time of completion. The third
file has the trace log of user login to computers and logout
from computers in addition to the specifications of computers.

Job Running Job FinishedJob Queued Allocation

Checkpointing
Job Removed

Suspended

Eviction

Eviction

Interactive
user arrival

Interactive
user departure

Completion

Removal
Eviction

Interactive
user arrival

Removal

Removal

Removal

Migrating

Removal

Eviction

Completion

Fig. 3. Job state transition diagram with migration state.

The original state transition diagram for a single job in
HTC-Sim has been presented in [10]. The HTCondor job
enters the queue when it is submitted by a user and then
waits to be allocated on a machine. During its runtime, the
job might be interrupted by interactive users. As a result, the
job gets suspended for a while or evicted immediately. The
task can also regularly checkpoint during its execution time.
Furthermore, a system administrator or the owner of the job
may manually remove the job at any state.

In Figure 3 we add the Migration state to the initial
workload state diagram. The migration of the workload can

occur at any time of its execution time. Additionally, migration
policies manage the migration process by determining which
job, when, and where to migrate. Also, live migration allows
jobs to continue executing while migration is taking place.
Moreover, we assume the completion of the job might happen
during the migration along with job eviction.

Idle

HTC

Sleep

Wake

Sleep

Task
allocation

Task
de-allocation

User

Interactive
user arrival

Interactive
user departure

HTC + User

Task allocation

Task
de-allocation

Interactive
user arrival

Interactive
user departure

Reserve
Reserve

Migration
cancelled

Interactive
user arrival

Task
reallocation

Fig. 4. Computer state transition diagram with reserve state.

Figure 4 shows the computer state transition diagram which
previously introduced in [10]. We include the Reserve state
in it where computer enters when it is selected as a target
host for a migrated job. When the job starts transferring from
the source host to the target host, the computer enters the
HTC state. Furthermore, the Reserve state changes to the User
state if an interactive user starts using it. Also, the reserved
computer begins idle when the migration is canceled. When a
machine is in a Sleep state, it powered-down except the RAM.
In this way, the machine consumes very low energy and can
be powered-up very quickly without restarting the operating
system. Unlike the machine when it is idle or reserved, it
consumes more energy than the Sleep state, but much lower
than HTC, User, and HTC+User states.

IV. SIMULATION SCENARIO

In this section, we present two different techniques to
perform the live migration in Newcastle University’s HTC
system. The techniques are based on our observation of the
system in order to mitigate jobs energy waste and makespan.
To achieve this, the system needs to prevent jobs from rejoin
the queue and restart executing due to jobs evictions.

A. Migration Interval

In this technique, we introduce a fix period of time during
job execution to check if the condition of migration occurs.
When there is a need for job migration, the system selects a
target computer from HTC system computer pool. Then, the
process of migration starts on the source and target computers.
However, the job on the source might be interrupted by an
interactive user before or during the migration which leads to
job eviction. Additionally, an interactive user also may login
into the target computer during the migration process. As a
result, the migration process stops, and the job resumes on
the source computer.

Start Job executing

Interval time
between migrations

Migration
condition
occurs

No

Job queuing

Yes

Job
interruption

No

Yes

Start migration
process on the

source computer

Target host
available

Yes

No

Job
interruption

Start migration
process on the
target computer

Job
interruption

Yes Yes

No No

Migration success

Fig. 5. The flow chart of interval live migration.

The flow chart in Figure 5 illustrates the method of interval
migration. Where a set of k jobs J={J1,J2,J3,...Jk} presents
in the queue. Each Ji; i ∈{1,k} has execution time ET (Ji).
The starts time of the job ST (Ji) is given when the job is
allocated on a source for execution. Then, the finish time
FT (Ji) of the job is calculated as

FT (Ji) = ST (Ji) + ET (Ji). (1)

When there is an interruption, the job Ji gets a new starting
ST (Ji) as well as new finishing time. Moreover, the queuing
time can be represented as QT (Ji) for a job Ji. After interval
time N , when the migration condition occurs, the job Ji starts
migrating from the source computer Cs to target computer Ct.
The job migration process is expressed as Ji : (Cs,→ Ct) and
the time of migration is represented as MT (Cs → Ct). Since
we are using live migration, the job Ji is still running on a
source machine Cs during the migration. Then, the starting
time of the job Ji on target machine Ct is giving as

STt(Ji) = STs(Ji)+ETs(Ji)+MT (Ji : (Cs → Ct)). (2)

The remaining execution time of job Ji on a target machine
Ct is calculated as

ETt(Ji) = ET (Ji)−ETs(Ji)−MT (Ji : (Cs → Ct)). (3)

B. Migration Responsive

In this method, we migrate the job when an interactive
user arrives while HTC job is running. The HTC job and
the interactive user share the same machine until the job is
migrated to another machine. However, this can affect the
performance of the running applications by the interactive user
on the source machine. The interactive user will have full CPU
and memory capacities of the source machine when the job is
migrated.

Start Job executing Job queuing

Yes

Start migration
process on the
target computer

Target host
available

Start migration
process on the

source computer

Job interruption

No

No

Migration success

Yes

Job can be
migrated

No

Yes

Job
interruption

Fig. 6. The flow chart of responsive live migration.

In previous work [21], we measured the live migration
time for various workload characteristics on different VMs
capacities. Also, we introduced three predictive models to
predict the time of live migration. Our results showed that
some workload might take a long time to migrate and some
cannot be migrated during the workload execution. We have
implemented these facts into our simulation tool. When the job
cannot be migrated within a short time, the job is removed
from the source machine and restart running on another
machine.

500

1000

1500

2000

2500

0 1 2 3 4 5 6 7 8 9 10

Migration Time (minutes)

T
o

ta
l
S

u
c
c
e
s
s
fu

l
M

ig
ra

ti
o

n
 (

h
o

u
rs

)

Migration Interval 15 30 60

0

100000

200000

300000

400000

0 1 2 3 4 5 6 7 8 9 10

Migration Time (minutes)

O
v
e
ra

ll
 M

ig
ra

ti
o

n
 T

im
e
 (

h
o

u
rs

)

Migration Interval 15 30 60

0

10000

20000

30000

40000

50000

60000

0 1 2 3 4 5 6 7 8 9 10

Migration Time (minutes)

O
v
e
ra

ll
 M

ig
ra

ti
o

n
 E

n
e
rg

y
 i
n

 k
W

h

Migration Interval 15 30 60

Fig. 7. Total migrations, overall migrations time, and overall energy consumption of successful migrations with different migration durations and intervals.

0

25000

50000

75000

0 1 2 3 4 5 6 7 8 9 10

Migration Time (minutes)

T
o

ta
l
o

f
In

te
rr

u
p

ti
o

n
s

Migration Interval 15 30 60

0

1000

2000

3000

4000

5000

6000

7000

0 1 2 3 4 5 6 7 8 9 10

Migration Time (minutes)

O
v
e
ra

ll
 M

ig
ra

ti
o

n
 T

im
e
 W

a
s
te

 (
h

o
u

rs
)

Migration Interval 15 30 60

0

300

600

900

1200

0 1 2 3 4 5 6 7 8 9 10

Migration Time (minutes)

O
v
e
ra

ll
 M

ig
ra

ti
o

n
 E

n
e
rg

y
 W

a
s
te

 i
n

 k
W

h

Migration Interval 15 30 60

Fig. 8. Total number of interruptions during migration, overall migrations waste time, and overall waste energy of failed migrations with different migration
durations and intervals

In this technique, the job rejoins the queue when there is no
target machine available in the HTC system pool as well as
when an interactive use begins working on the target computer
during the migration process. Then, the finish time of the
job will be calculated according to Equation 1. Furthermore,
Equation 2 and 3 are used to determine the starting time of
the job on the target computer and the remaining execution
time.

V. SIMULATION OUTCOME

The presented results in this section aim to give a clear
understanding of our simulation outcomes. Here, we demon-
strate the migration interval technique and we have used the
random policy as a baseline to validate our extension to HTS-
Sim. The policy selects the jobs randomly in order to migrate
them as well as the selection of target computers. Furthermore,
we have not introduced any policy or algorithm to manage
the migration process such as when to migrate, which job
to migrate, and where to migrate. However, our tool can
easily adapt policies and algorithms to reduce system’s energy
consumption and jobs’ makespan.

Figure 7 shows the results of successful migration with
different migration durations and intervals. The figure presents
the total number of successful job migrations, overall jobs mi-

grations time, and the energy consumption that jobs consumed
during the migration process. We see significant reductions in
the results when the interval value increases. If the interval
time occurs during the job execution time, the system checks
its migration policies and starts the migration process if
needed. Consequently, a short-running job might have fewer
migration attempts than a long-running job which leads to
decreases in migration energy consumption and time. Thus, it
is crucial to determine when to migrate as well as the reason
for migration to avoid inefficient migration.

We acknowledge a significant relation between the mi-
gration time and the energy consumption of the migration
process. When a job takes a long time to be migrated, it
consumes more energy. Furthermore, we see this as an existing
problem for many VM consolidation technics where the energy
consumption of migration process is not considered. To get
over this problem, a policy could be developed, leveraging
our observations in [21], to selectively migrate jobs based on
estimated runtime and migration time. In doing so, the policy
could curtail the costs of migrating jobs, and achieve an overall
benefit for the system.

Figure 8 demonstrates the relative impact of jobs inter-
ruptions during the migration process where a user logs in
to the source or target computer during the migration. We

observe increasing in the number of jobs’ interruptions when
the migration time of the job increases. As a result, the energy
waste of jobs with a long migration time is much higher
than jobs associated with short migration time. Similarly, we
observed an increase in energy waste of the removed jobs
during the migration when the migration time is long. Thus,
it worth to check the opening and closing times of student
clusters and design policies according to that to decrease the
number of users interruption.

0

1

2

3

4

0 1 2 3 4 5 6 7 8 9 10

Migration Time (minutes)

To
ta

l I
n

te
rr

u
p

ti
o

n
s

(%
)

Migration Interval 15 30 60

Fig. 9. Proportion of migrations interruption.

Furthermore, the interactive user can login into the source
computer or target computer at any time during the migration
process regardless the migration interval value. Since we are
using random migrations and random target computers to
host the migrated job, we cannot predict when the users’
login into the system occur. Consequently, the chance of
interruptions compares to the number of migrations almost
the same between the different migration interval values as
illustrated in figure 9. The figure shows the proportion of
migrations interrupted in the system. Clearly, the number of
interactive users in the system makes an impact on migration
success, but there is no immediate link between the interval
values and the users’ interruptions. As a result, it is crucial to
determine when and where to migrate to avoid unsuccessful
migrations.

In Figure 10 we explore the impact of the finishing jobs
during the migration process. In this situation, the jobs migra-
tions are considered to be worthless migrations. It increases
the overall energy consumption of the system. Also, it reduces
the number of available machines in the system pool. As
a consequence, the jobs might be queued for a long time
waiting for an idle computer to become available. Furthermore,
number of migration attempts failed due to an unavailable
machine for job migration. These failed migration attempts
might reduce the overall energy consumption of the system.
Our simulation can count these failed attempts during its

runtime which gives us the opportunity to understand how
many resources usually available for migration when it is
needed.

0.0

2.5

5.0

7.5

10.0

0 1 2 3 4 5 6 7 8 9 10

Migration Time (minutes)

O
ve

ra
ll

M
ig

ra
ti

o
n

 E
n

er
g

y
C

o
n

su
m

p
ti

o
n

 (
%

)

Migration Interval 15 30 60

Fig. 11. Impact of jobs migrations on energy.

Figure 11 presents the percentage of total migration energy
from the total system energy. When the number of migration
increases, the total energy consumption of the system increases
as well. Also, the migration time shows a significant increase
in total energy consumption when the job takes a long time
to be migrated. As the figure shows, jobs migrations might
consume up to 10% of total system energy.

VI. CONCLUSIONS

This paper has presented the virtualisation and live migra-
tion in HTC systems by extending an existing simulation tool.
This allows researchers to evaluate policies and algorithms in
order to reduce the energy consumption and jobs makespan
by using live migration techniques in HTC environment. A
simple random policy has validated our outcomes of the tool.
The tool can calculate the overall migration time, the overall
energy consumption and waste, and the number of failed
migration due to interactive users interruptions or removed
jobs. Also, the simulation can count the number of migration
attempts when there is not host for migration. Moreover,
our results showed that the energy consumption significantly
increases when the migration process takes a long time to
be finished. Through this paper, we have suggested some
approaches to mitigate the energy waste of live migration in
a large-scale computing environment. In our ongoing work,
we are designing policies and algorithms for migration to
reduce energy consumption by avoiding job interruptions.
Furthermore, in our current work we consider a single job
for each computer; in the future, we hope to assign multiple
jobs on one source machine.

0

10000

20000

30000

40000

50000

60000

70000

0 1 2 3 4 5 6 7 8 9 10

Migration Time (minutes)

T
o

ta
l
fi

n
is

h
e
d

 j
o

b
 d

u
ri

n
g

 m
ig

ra
ti

o
n

Migration Interval 15 30 60

0

1000

2000

3000

4000

5000

0 1 2 3 4 5 6 7 8 9 10

Migration Time (minutes)

O
v
e
ra

ll
 M

ig
ra

ti
o

n
 T

im
e
 W

a
s
te

 (
h

o
u

rs
)

Migration Interval 15 30 60

0

250

500

750

0 1 2 3 4 5 6 7 8 9 10

Migration Time (minutes)

O
v
e
ra

ll
 M

ig
ra

ti
o

n
 E

n
e
rg

y
 W

a
s
te

 i
n

 k
W

h

Migration Interval 15 30 60

Fig. 10. Total number of jobs finished during migration, overall migrations waste time, and overall waste energy of failed migrations with different migration
durations and intervals

REFERENCES

[1] M. J. Litzkow, M. Livny, and M. W. Mutka, “Condor-a hunter of idle
workstations,” in [1988] Proceedings. The 8th International Conference
on Distributed, Jun 1988, pp. 104–111.

[2] D. P. Anderson, “Boinc: a system for public-resource computing and
storage,” in Fifth IEEE/ACM International Workshop on Grid Comput-
ing, Nov 2004, pp. 4–10.

[3] W. Gentzsch, “Sun grid engine: towards creating a compute power grid,”
in Proceedings First IEEE/ACM International Symposium on Cluster
Computing and the Grid, 2001, pp. 35–36.

[4] C. Clark, K. Fraser, S. Hand, J. G. Hansen, E. Jul, C. Limpach, I. Pratt,
and A. Warfield, “Live migration of virtual machines,” in Proceedings
of the 2Nd Conference on Symposium on Networked Systems Design
& Implementation - Volume 2, ser. NSDI’05. Berkeley, CA,
USA: USENIX Association, 2005, pp. 273–286. [Online]. Available:
http://dl.acm.org/citation.cfm?id=1251203.1251223

[5] H. Team, “HTCondor version 8.7.7 manual,” Center for High
Throughput Computing, University of Wisconsin-Madison, Tech. Rep.,
2018. [Online]. Available: https://research.cs.wisc.edu/htcondor/manual

[6] M. Forshaw, A. S. McGough, and N. Thomas, “Energy-efficient
checkpointing in high-throughput cycle-stealing distributed systems,”
Electronic Notes in Theoretical Computer Science, vol. 310, pp. 65 – 90,
2015, proceedings of the Seventh International Workshop on the Prac-
tical Application of Stochastic Modelling (PASM). [Online]. Available:
http://www.sciencedirect.com/science/article/pii/S1571066114000978

[7] G. Aupy, A. Benoit, R. Melhem, P. Renaud-Goud, and Y. Robert,
“Energy-aware checkpointing of divisible tasks with soft or hard dead-
lines,” in 2013 International Green Computing Conference Proceedings,
June 2013, pp. 1–8.

[8] X. Ren, R. Eigenmann, and S. Bagchi, “Failure-aware checkpointing
in fine-grained cycle sharing systems,” in Proceedings of the 16th
International Symposium on High Performance Distributed Computing,
ser. HPDC ’07. New York, NY, USA: ACM, 2007, pp. 33–42.
[Online]. Available: http://doi.acm.org/10.1145/1272366.1272372

[9] D. Nurmi, J. Brevik, and R. Wolski, “Minimizing the network overhead
of checkpointing in cycle-harvesting cluster environments,” in 2005
IEEE International Conference on Cluster Computing, Sept 2005, pp.
1–10.

[10] M. Forshaw, A. McGough, and N. Thomas, “HTC-Sim: A trace-
driven simulation framework for energy consumption in high-
throughput computing systems,” Concurr. Comput. : Pract. Exper.,
vol. 28, no. 12, pp. 3260–3290, Aug. 2016. [Online]. Available:
https://doi.org/10.1002/cpe.3804

[11] H. Casanova, “Simgrid: a toolkit for the simulation of application
scheduling,” in Proceedings First IEEE/ACM International Symposium
on Cluster Computing and the Grid, 2001, pp. 430–437.

[12] R. Buyya and M. Murshed, “Gridsim: A toolkit for the modeling and
simulation of distributed resource management and scheduling for grid
computing,” Concurrency and computation: practice and experience,
vol. 14, no. 13-15, pp. 1175–1220, 2002.

[13] W. H. Bell, D. G. Cameron, A. P. Millar, L. Capozza, K. Stockinger,
and F. Zini, “Optorsim: A grid simulator for studying dynamic data
replication strategies,” The International Journal of High Performance
Computing Applications, vol. 17, no. 4, pp. 403–416, 2003. [Online].
Available: https://doi.org/10.1177/10943420030174005

[14] G. Bisson and F. Hussain, “Chi-sim: A new similarity measure for
the co-clustering task,” in 2008 Seventh International Conference on
Machine Learning and Applications, Dec 2008, pp. 211–217.

[15] R. N. Calheiros, R. Ranjan, A. Beloglazov, C. A. De Rose, and R. Buyya,
“CloudSim: a toolkit for modeling and simulation of cloud computing
environments and evaluation of resource provisioning algorithms,” Soft-
ware: Practice and experience, vol. 41, no. 1, pp. 23–50, 2011.

[16] D. Kliazovich, P. Bouvry, and S. U. Khan, “GreenCloud: a packet-level
simulator of energy-aware cloud computing data centers,” The Journal
of Supercomputing, vol. 62, no. 3, pp. 1263–1283, Dec 2012. [Online].
Available: https://doi.org/10.1007/s11227-010-0504-1

[17] A. Núñez, J. L. Vázquez-Poletti, A. C. Caminero, G. G. Castañé,
J. Carretero, and I. M. Llorente, “iCanCloud: A flexible and
scalable cloud infrastructure simulator,” Journal of Grid Computing,
vol. 10, no. 1, pp. 185–209, Mar 2012. [Online]. Available:
https://doi.org/10.1007/s10723-012-9208-5

[18] S. H. Lim, B. Sharma, G. Nam, E. K. Kim, and C. R. Das, “Mdcsim: A
multi-tier data center simulation, platform,” in 2009 IEEE International
Conference on Cluster Computing and Workshops, Aug 2009, pp. 1–9.

[19] A. Beloglazov and R. Buyya, “Optimal online deterministic algorithms
and adaptive heuristics for energy and performance efficient dynamic
consolidation of virtual machines in cloud data centers,” Concurr.
Comput. : Pract. Exper., vol. 24, no. 13, pp. 1397–1420, Sep. 2012.
[Online]. Available: http://dx.doi.org/10.1002/cpe.1867

[20] E. Feller, L. Rilling, and C. Morin, “Energy-aware ant colony based
workload placement in clouds,” in 2011 IEEE/ACM 12th International
Conference on Grid Computing, Sept 2011, pp. 26–33.

[21] O. Alrajeh, M. Forshaw, and N. Thomas, “Machine learning models
for predicting timely virtual machine live migration,” in Computer
Performance Engineering, P. Reinecke and A. Di Marco, Eds. Cham:
Springer International Publishing, 2017, pp. 169–183.

