EssC: domain structures inform on the elusive translocation channel in the Type VII secretion system

*School of Life Sciences, University of Dundee, Dow Street, Dundee DD1 5EH, U.K.

INTRODUCTION

The specialized Type VII secretion system (T7SS) is employed by many species of Gram-positive bacteria to translocate proteins across the cell envelope. In the important pathogens Mycobacterium tuberculosis and Staphylococcus aureus this complex secretion apparatus is a major determinant of virulence [1,2]. The composition of the T7SS and nature of secreted substrates is surprisingly diverse across phyla [3]. However, a characteristic of this secretion system is the presence of two types of protein, the ESAT-6 (early secreted antigenic target of 6 kDa)/EssA family of virulence factors, which represent the prototypical substrate, and a large integral membrane-bound protein predicted to possess multiple ATPase-type domains [4] and the stage III secreted product from Bacillus subtilis (called SpoIIIIE [5]). FtsK and SpoIIIIE form oligomeric assemblies with an active site created by subunit pairing where ATP hydrolysis is utilized to drive molecular transport. Extending from the conservation of EssC across species there are additional strands of evidence to support a central role for this type of ATPase in the T7SS. The FtsK/SpoIIIIE orthologue EccC, is essential to form a stable T7SS membrane complex in M. tuberculosis [6]. Furthermore, the homologous EssC in S. aureus is required for the secretion of ESAT-6 proteins and EssC-knockout mutants lose the ability to establish persistent infections [2,3].

To investigate EssC, the key core component of this important bacterial secretion system, we targeted the protein from the thermophilic bacterium Geobacillus thermodenitrificans. The full-length membrane-bound EssC was heterologously expressed in E. coli and the purified detergent-solubilized protein formed an oligomer. Bioinformatics analysis predicts two cytoplasmic components for this 169 kDa integral membrane protein (Figure 1). An N-terminal 26 kDa fragment (EssC-N) composed of two forkhead-associated (FHA) domains, similar to the S. aureus orthologue [7], is followed by two transmembrane helices. The C-terminal segment carries three predicted ATPase domains whereas D2 and FHA domains are required for the production of a stable and functional protein.

Key words: ATPase, ESX-1, forkhead-associated domain, membrane-bound protein, P-loop-containing domain, secretion system.

Abbreviations: BN-PAGE, blue native polyacrylamide gel electrophoresis; CC, correlation coefficient; CCD, charge-coupled device; CV, column volume; DDM, n-dodecyl-β-D-maltoside; ESAT-6, early secreted antigenic target of 6 kDa; Ess, ESX-1 secretion system; FHA, forkhead-associated; FtsK, filamenting temperature-sensitive mutant K; HA, haemagglutinin; IPTG, isopropyl-β-D-thiogalactopyranoside; mant, 2′,3′-[(N-methyl-anthraniloyl); NCS, non-crystallographic symmetry; SAD, single-wavelength anomalous diffraction; SEC, size-exclusion chromatography; SeMet, selenomethionine; TSB, tryptic soy broth; T7SS, Type VII secretion system; TCEP, tris-(2-carboxyethyl)phosphine hydrochloride; TEV, tobacco etch virus; TLS, Translation/Libration/Screw. PDB codes: EssC-N, 5FWH; EssC-C, 5FV0.

† To whom correspondence should be addressed (email w.n.hunter@dundee.ac.uk).

© 2016 The Author(s). This is an open-access article published by Portland Press Limited on behalf of the Biochemical Society and distributed under the Creative Commons Attribution License 4.0 (CC BY).
Figure 1 EssC topology and EssC-C structure

Cartoon representation of EssC-N (left) in rainbow colour gradient (N-terminus blue to C-terminus red), consisting of two FHA domains. In the topology cartoon of full-length EssC (middle) the structurally characterized domains are drawn in the same colour scheme. Two transmembrane segments (grey cylinders) are predicted with the N-terminal 235 residue peptide, including EssC-N, in the cytoplasm. Cartoon representation of EssC-C (right) in rainbow colour gradient (N-terminus blue to C-terminus red). The bound nucleotide analogue mant-ATP is drawn as sticks. The loop connecting the two ATPase domains, the bound nucleotide, the P-loop and the swapped p9-segment feature are identified.

compare structures of similar EssC-C constructs of the D2–D3 combination. The comparison reveals a major conformational difference involving D2 that might be linked to the function of the transport system, and a minor perturbation in D3 that correlates with a difference in ATP binding. Rosenberg et al. [8] proposed that the ATPase domain D1 was auto inhibited by the adjacent D2 domain and extended their analyses to include yeast two-hybrid binding studies that indicated binding of the ESAT-6 protein EsxB to EccC and, as will be discussed, a model of oligomerization dependent on complex formation with EsxB. Informed by our structural data on the G. thermodenitrificans protein, we investigated the contributions that specific domains of EssC might make to the T7SS of the related organism S. aureus.

Materials and Methods

Cloning

The full-length gene for G. thermodenitrificans NG80-2 EssC [Uniprot: A4IKE7, codon optimized for E. coli K12 (GENscript)] was cloned into the NcoI/XhoI site of a modified pET27b vector (Novagen) creating pET27bEssC. A construct to produce the N-terminal EssC-N fragment (residues 1–196) was PCR amplified from the full-length gene and cloned into the NcoI/XhoI site of a modified pET27b vector (Novagen) creating pET27b EssC-N. A construct to produce the C-terminal fragment EssC-C (residues 966–1479) was cloned into the same vector. Both plasmids produce an N-terminal hexahistidine-tagged protein with a tobacco etch virus (TEV) protease cleavage site.

Full-length S. aureus essC (Uniprot: P0C048) and the various domain-deletion constructs (FHA, D23 and D3) were amplified from genomic DNA (strain RN6390) and cloned into the BglII/EcoRI sites of plasmid pRMC2 [9]. Haemagglutinin (HA)-tagged variants of full-length essC and domain deletion constructs D23 and D3 were amplified from the respective untagged constructs and cloned into pRAB11 [10]. Primers used for cloning purposes are listed in Supplementary Table S1. The integrity of all constructs was verified by sequencing.

Recombinant protein production

The recombinant EssC-N protein was obtained by cultivating freshly transformed E. coli BL21(DE3) pLysS in a 20 ml starter culture of Luria–Bertani (LB) medium including 50 μg/ml kanamycin and 15 μg/ml chloramphenicol. A 5 ml volume of starter culture was used to inoculate 1 litre of LB culture (total 4 litres) including 1 mM magnesium chloride and 0.5 mM calcium chloride and grown at 37°C in 5 litre Erlenmeyer flasks. When the D600 reached 0.6–0.8, expression was induced with 1 mM IPTG (isopropyl-β-D-thiogalactopyranoside) and the culture was
incubated overnight at 25 °C. The cells were harvested by centrifugation (5000 g, 30 min, 4 °C) then resuspended in buffer A (50 mM sodium phosphate, pH 7.8, 300 mM sodium chloride 10% glycerol) along with 1 M DTT and a Mini Protease inhibitor tablet (Roche). The cell/buffer A mixture was processed in a French press (Thermo) and the lysed sample was passed through a 0.45 μm filter and supplemented with 25 mM imidazole ready for the first affinity chromatography purification step. A 1 ml CV (column volume) His-Trap HP column (GE Healthcare) charged with Ni2+ was calibrated by four CV washes with buffer B (50 mM sodium phosphate, pH 7.8, 25 mM imidazole, 300 mM sodium chloride and 10% glycerol) after which the sample was loaded and fractions were collected over a linear imidazole concentration gradient (25–250 mM over 18 CV). Fractions containing eluted EssC-N were combined and concentrated of a spin concentrator (Sartorius) exchanging the buffer with buffer containing eluted EssC-N were combined and concentrated in a concentration gradient (25–250 mM over 18 CV). Fractions containing purified EssC-N were combined, concentrated to 20 mg/ml in different buffers and used in crystallization trials.

An SeMet-labelled form of EssC-N was obtained using a metabolic inhibition protocol [11]. For the starter culture freshly transformed E. coli BL21(DE3) pLYsS cells were grown in 50 ml of LB broth along with 50 μg/ml kanamycin and 15 μg/ml chloramphenicol. The cells cultured for 14 h at 37 °C. The sample was passed through a His-Trap HP column previously equilibrated with buffer A, to separate the desired sample from non-cleaved protein and the TEV protease. Fractions containing EssC-N were concentrated and further purified using a Superdex75 GL10/300 size-exclusion chromatography (SEC) column equilibrated with buffer C \{10 mM Tris/HCl, pH 7.8, 20 mM sodium chloride and 0.5 mM TCEP [tris-(2-carboxyethyl)phosphine hydrochloride]\}. Fractions containing purified EssC-N were combined, concentrated to 20 mg/ml in different buffers and used in crystallization trials.

For the preparation of S. aureus membrane fractions, 10 ml of D2O, 2 cells were pelleted and washed as described above and resuspended in 1 ml of 1× PBS plus Mini Protease inhibitor (Roche). Digestion of the cell wall was carried out using lysostaphin and cells were broken by sonication. Intact cells were removed by centrifugation (10000 g, 10 min, 4 °C) and membrane fractions were prepared by ultracentrifugation (227000 g, 30 min, 4 °C). Membrane pellets were solubilized in 1× PBS and 0.5% Triton X-100 and the supernatant was kept as the soluble protein fraction.

For Western blots, samples were mixed with LDS loading buffer and boiled for 10 min. For whole cell fractions, pelleted cells were washed with 1× PBS and normalized to a D2O of 2 in 1× PBS. Cells were lysed by the addition of lysostaphin (Ambi) to a final concentration of 50 μg/ml and incubated at 37 °C for 30 min. Samples were mixed with an equal volume of 2× LDS loading buffer and boiled for 10 min.

S. aureus sample preparation and Western blotting

S. aureus strain RN6390 and the isogenic ΔessC deletion variant [3] were used for protein expression and secretion analysis. Cells were grown overnight in tryptic soy broth (TSB) at 37 °C under vigorous agitation, diluted 1:100 into fresh TSB medium and growth was monitored by measuring the D600. Where necessary, chloramphenicol, to a final concentration of 10 μg/ml, was added for plasmid selection. Protein production was induced by addition of anhydrotetracycline when the D600 of the culture reached 0.4.

Cells were grown until the culture reached a D600 of 2. Samples were withdrawn and the cells were separated from the culture supernatant by centrifugation at 2770 g. Supernatant samples were passed through a 0.22 μm filter, directly mixed with an appropriate amount of 4× NuPage LDS loading buffer and boiled for 10 min. For whole cell fractions, pelleted cells were washed with 1× PBS and normalized to a D600 of 2 in 1× PBS. Cells were lysed by the addition of lysostaphin (Ambi) to a final concentration of 50 μg/ml and incubated at 37 °C for 30 min. Samples were mixed with an equal volume of 2× LDS loading buffer and boiled for 10 min.

For the preparation of S. aureus membrane fractions, 10 ml of D2O, 2 cells were pelleted and washed as described above and resuspended in 1 ml of 1× PBS plus Mini Protease inhibitor (Roche). Digestion of the cell wall was carried out using lysostaphin and cells were broken by sonication. Intact cells were removed by centrifugation (10000 g, 10 min, 4 °C) and membrane fractions were prepared by ultracentrifugation (227000 g, 30 min, 4 °C). Membrane pellets were solubilized in 1× PBS and 0.5% Triton X-100 and the supernatant was kept as the soluble protein fraction. Protein concentration of the membrane and soluble fractions was determined with the DC Protein Assay (Biorad Laboratories). For preparation of urea-washed membrane fractions, broken cells were thoroughly mixed with an equal volume of 8 M urea prior to ultracentrifugation. Membrane pellets were washed with 1× PBS to remove residual urea and resuspended as described above.

For Western blots, samples were mixed with LDS loading buffer and boiled for 10 min prior to loading on Bis-Tris gels. Western blots were performed according to standard methods with antibody dilutions as follows: anti-EsxA 1:2500, anti-EsxC 1:2000, anti-EsxA 1:2000, anti-EsxC 1:2000, anti-EsxA 1:2000, anti-EsxC 1:2000, anti-EsxA 1:2000.

Binding of mant-ATP

A 1 mM stock solution of the fluorescent mant-ATP (2/3- (N-methyl-anthraniolyl)-adenosine-5′-triphosphate triethylammonium salt; Jena Bioscience) was prepared in buffer D and titrated with EssC-C. Fluorescence was monitored at 20 °C using a LS44 spectrometer (PerkinElmer) with an excitation wavelength of 350 nm (or 360–550 nm for the emission spectrum) and an emission wavelength of 448 nm at a bandwidth of 5 nm. Bound mant-ATP was displaced by titration with 100 mM ATP.
Blue native polyacrylamide gel electrophoresis of EssC

Linear 4–12% gradient native Bis-Tris gels (Novex®, Life Technologies) were used according to the manufacturer’s protocol. Samples comprising 8 μg of purified EssC-C or 5 μg of full-length EssC were loaded. Apoferritin (480 kDa), B-phycoerythrin (242 kDa), lactate dehydrogenase (146 kDa), BSA (66 kDa) and soyabean trypsin inhibitor (20 kDa) were used as standard proteins. The EssC band was excised from the BN-PAGE (blue native polyacrylamide gel electrophoresis) gel, digested with trypsin and subjected to peptide mass fingerprinting using matrix-assisted laser-desorption ionization–time-of-flight mass spectrometry analysis (University of Dundee ‘Fingerprints’ Proteomics Facility).

Crystallographic analyses

Native EssC-N crystals, maximum dimension 0.2 mm, were obtained in 2 days by sitting-drop vapour diffusion at 20°C in 1 μl drops at the ratio of 1:1 protein solution (20 mg/ml EssC-N in 50 mM sodium phosphate, pH 7.8, 300 mM sodium chloride and 0.5 mM TCEP) to reservoir condition (0.2 M magnesium formate and 20% w/v PEG3350). Isomorphous SeMet-labelled EssC-N crystals were grown in the same fashion but with the protein concentration halved. Crystals were harvested using glycerol or a mineral oil cryo-protectant (LV-oil, MiTeGen), flash frozen in liquid nitrogen and characterized in-house with a Rigaku MicroMax 007HF generator equipped with Varimax VHF optic, and a Saturn944 HG + charge-coupled device (CCD) detector. Data were then collected, at −173°C, on beamline I04 at the Diamond Light Source (DLS, Didcot, U.K.) with a Dectris Pilatus 6M-F detector. The data were indexed and merged using XDS [13] and SCALA [14] respectively. The crystals displayed the space group P2_1_2_1. The structure could not be determined using the native data; however, the SeMet-labelled crystal structure was solved to 2.1 Å (1 Å = 0.1 nm) using the SAD protocol of Auto-Rickshaw [15]. A partial model of 63 residues was produced during automated building using the program ARP/wARP [16]. F_{o}-F_{c} values (the non-anomalous component of the Bijvoet pair) were calculated using SHELXC [17]. The maximum resolution for substructure determination and initial phase calculation was set to 2.5 Å. Three out of four selenium atoms were found using SHELXD [18]. Initial phases produced a CC (correlation coefficient) of 0.29. The occupancy of all substructure atoms was refined using the program BP3 [19]. Density modification, and phase extension were performed using RESOLVE [20]. The CC increased to 0.74 at 2.1 Å resolution and the model was extended to 157 residues with BUCCANEER as implemented in the CCP4 suite. This resulted in R_{work} and R_{free} values of 0.37 and 0.46 respectively. Inspection of electron and difference density maps combined with model building using COOT extended the model to 1004 residues. Refinement with Refmac5, and employing strict NCS restraints followed and reduced R_{work} and R_{free} values to 0.33 and 0.44 respectively. However, the N-terminal region, the D2–D3 linker region and the interface where intermolecular symmetry contacts occur were poorly defined.

Improved diffraction data were obtained from an isomorphous crystal of the native EssC-C–mant-ATP complex. The partial model of the SeMet protein was used for molecular replacement with PHASER [27]. Two-fold map averaging using PARROT [28] followed by model building using BUCCANEER generated a model of 991 residues, which gave R_{work} and R_{free} values of 0.30 and 0.37. TLS refinement in Refmac5 with iterative rounds of map inspection, model manipulation and the inclusion of nucleotide ligands, water molecules, ethylene glycol and several side-chain conformers completed the refinement. In one molecule there was good density for the mant moiety of the ATP derivative, in the other molecule the density for this part of the nucleotide ligand was ambiguous and so ATP was modelled. In the early stages of the analysis we included a Mg^{2+} ion positioned near the ATP phosphates but it did not refine satisfactorily and so was then removed. NCS restraints were applied at a domain level and maintained throughout the refinement.

Crystallographic statistics are presented in Supplementary Table S2. MOLPROBITY [29] and COOT were used to monitor model geometry during refinement of both EssC-N and EssC-C. Figures were prepared using PyMOL (Schrödinger LLC). The DALI server was used to search the PDB for structural homologues and structural superfpositions were performed using DALILITE [30]. Multiple sequence alignments were calculated using ClustalW2 [31] and edited using ALINE [32]. Crystal contact interfaces were analysed using PISA [33].

Computational modelling

The EssC transmembrane segments were predicted using TMHMM v2.0 [34]. Homology models were generated using...
the one-to-one threading model of the Phyre2 fold recognition server [35]. A homology model of EssC-D1 (Alaαn−1–Ileαn) was made on the basis of 231 residues in D2 and 278 residues in the ATPase domain of the hexameric FtsK (PDB code 2IUU [36]), and superimposed on the latter.

RESULTS AND DISCUSSION
Characterization of EssC and EssC-C
Recombinant EssC-C, the C-terminal residues 966–1479 comprising the two ATPase-like modules D2 and D3 (Figure 1), was produced in E. coli and purified with a yield of 7 mg/l culture. The protein, approximately 60 kDa, migrates in SEC and BN-PAGE with apparent molecular masses of approximately 83 kDa and 65 kDa respectively, which is consistent with a monomeric state. An additional higher-molecular-mass band (180 kDa), accounting for approximately 5% of the total protein, was observed in the BN-PAGE analysis suggestive of some aggregation (Supplementary Figure S1).

An equilibrium binding constant of 0.94 ± 0.11 μM for the ATP analogue mant-ATP with EssC-C was determined on the basis of fluorescence measurements. The binding curve suggests a stoichiometry of <1:1 (mant-ATP/EssC-C) as an excess of protein was required to reach saturation. The mant-ATP fluorescence observed when bound to EssC-C was quenched by addition of ATP and the analogue was readily displaced (Supplementary Figure S2).

Recombinant full-length 169 kDa EssC was detected in the E. coli membrane fraction, solubilized and purified with yields of typically approximately 10 μg/l bacterial culture. The purified material migrated in a BN-PAGE experiment at an apparent molecular mass of 1 MDa and the identity was confirmed by mass fingerprinting analysis (Supplementary Figure S3). The observed mass is consistent with the presence of a hexamer. Note also that a multimeric form of EssC with a similar high molecular mass was detected from S. aureus extracts in a recent cross-linking study [37].

Structure of EssC-N
The EssC-N crystals, although of good appearance, displayed diffraction that indicated the presence of multiple crystalline components. It proved surprisingly difficult to determine the structure, and numerous samples were tested before useable data were recorded. Initial phases were derived from a SAD experiment using SeMet-substituted protein and it was this model that was subsequently refined. EssC-N consists of residues Metα1–Leuα195 foiled into a two-domain structure with each domain representative of the β-sandwich FHA fold (Figure 1). Residues Metα1–Gluα9 constitute domain FHA1, which is linked to FHA2 via a short dipeptide linker (Gluα9 and Ginα9). Seven residues are missing from the model of FHA1 due to insufficient electron density. These residues (at positions 19, 20, 53, 54, 80, 81 and 82) are located on turns linking β-strands. FHA1 and FHA2 domains consist of nine and 12 β-strands respectively with the domains aligned almost perpendicular to each other. The domain–domain contacts are mainly via van der Waals interactions between side chains. These interactions involve residues on β1, β2, β8, β9 and the turns that link β1–β2 and β7–β8 on FHA1, with the turns linking β15–β16, β17–β18 and β19–β20 on FHA2. A pronounced feature at the domain–domain interface is Trpα5 nestled into a cavity formed by Leuα82, Proα64 and Tyrα165 (Figure 2). There are van der Waals interactions formed between Cysβ12 and Leuα18 of FHA1 with Pheα143 and Leuα162 respectively on FHA2. Hydrogen-bonding interactions also contribute to the domain alignments, with a network of three glutamines (residues 3, 93, and 167) and a water molecule interacting at one end of the interface. In addition, Ginα9 lies on the inter-domain linker section and interacts with glutamines on each FHA domain, whereas at the other end of the interface two hydrogen bonds involving main-chain amide and carbonyl group link Thrα68 and Tyrα51 with Glyα46 and Ginα86 respectively to form a short section of antiparallel β-sheet (Figure 2).

The most similar structural orthologue identified is also a twin-FHA domain structure, namely the S. aureus EssC N-terminal domains (PDB code 1WV3 [7]), which shares 15% sequence identity. Superimposition of the twin domains, comprising some 172 Ca positions, results in an rmsd of 2.9 Å (Z-score 18) and shows the alignment of the FHA domains with respect to each other is conserved in the two structures (Supplementary Figure S4). When individual domains are considered the rmsd falls to 1.7 Å (Z-score 10.5) over 71 Ca positions and an rmsd of 1.9 Å (Z-score 14.0) over 97 Ca positions for FHA1 and FHA2 respectively. Although the identity of amino acids is poorly conserved at the interface in general, the hydrophobic nature of the side chains is maintained and a series of compensating changes result in the same overall structure. For example, the Trpα5–Leuα82–Proα64–Tyrα165 configuration in G. thermodenitrificans Essc-N is replaced by Ileα5–Leuα12–Tyrα7–Glnα57:Tryα58–Glyα161 in the S. aureus protein structure. The main differences between the structures are that the FHA1 β6–turn–β7 segment of Essc-N is truncated by eight residues and in FHA2, the β13–turn–β14 section extended by five residues.

EssC-N also shares structural similarity with proteins involved in phosphopetptide binding: at the level of single FHA domains then alignments result in rmsd values of 1.5 Å (Z-score 9.7, 76 Ca positions) for FHA2 and 2.5 Å (Z-score 8.2, 78 Ca positions) for FHA1 with the NMR-derived structure of Ki67 (PDB code 2AFF [38]).

The FHA domain was first identified in forhead transcription factors and subsequently in numerous proteins from both prokaryotes and eukaryotes [39]. The proteins in which they are found are implicated in diverse biological events including signal transduction, transcriptional regulation and vesicular transport, although the precise contribution of the FHA domains to these processes remains elusive. In some examples the domain can bind phosphothreonine-containing peptides so providing a mechanism to link phosphorylation with direct protein–protein interactions.

© 2016 The Author(s). This is an open access article published by Portland Press Limited on behalf of the Biochemical Society and distributed under the Creative Commons Attribution Licence 4.0 (CC BY).
[39]. However, as reported by Tanaka et al. [7], motifs common to many FHA domains and residues implicated in the recognition and binding of phosphotheonine, as exemplified by Ki67 are absent from EssC-N.

We made numerous attempts, all unsuccessful, to identify protein binding partners for the FHA domains using pull-down and bacterial two-hybrid approaches (results not shown). The only functional contribution we can assign to this EssC segment at present is in making a contribution to producing a stable, active protein (see below). It is intriguing, however, that the orientation of the FHA domains with respect to each other is conserved in the two structures discussed, in spite of a low sequence identity, and this suggests a functional role for such a structural combination.

Structure of EssC-C

The crystal structure of EssC-C was phased from a SAD experiment using an SeMet-substituted protein. A crystal of the EssC-C–mant-ATP complex gave improved data and hence this dataset was used to finalize the structure at 2.9 Å resolution (Figure 1). The asymmetric unit consists of two EssC-C polypeptides, labelled A and B, each resolved from Ala96 to the C-terminal Glu479. The polypeptide is composed of two homologous P-loop ATPase-like modules or domains (D2 and D3), which are connected by a linker (Gln1225–Ser1241). This domain structure is dominated by a central β-sheet core of seven or eight strands mainly aligned in parallel fashion and decorated with helices on either side. In D2 the central parallel β-sheet is sandwiched between α1–α2 and α3–α6 and in D3 between α10–α12 and α13–α17. In D3 the core is extended with four strands β11, β12, β19 and β20. Strand β19 follows a sharp turn in the vicinity of the potential ATP-binding site. In D2 the corresponding polypeptide does not extend the core sheet but rather forms an extended structure which we term the ‘β9-segment’ (Ile1171–Tyr1198) that protrudes from the globular fold so that β9 (Gly1183–Lys1188) serves to extend the central β-sheet of a symmetry-related molecule D2 domain through association with β8 (Thr1155–His1159) and β10 (Thr1195–Ile1197) (Supplementary Figure S5). A least-squares fit of polypeptide A and B, over 457 Cα-atoms, results in an rmsd of 2.1 Å. This relatively high value results from the different positioning of the two domains with respect to each other, which is facilitated by different conformations of the linker region. Aligning individual domains for molecules A and B results in an rmsd of 1.2 Å for D2 (231 Cα-atoms) and 0.6 Å for D3 (211 Cα-atoms).

The D2 domain

The initial structure of SeMet–EssC-C indicated that ATP was present in the nucleotide-binding site of the D2 module even though nucleotide had not been added during the crystallization. The structure derived from crystals grown in the presence of mant-ATP displayed additional density for the mant moiety in one polypeptide (Supplementary Figure S6). ATP was included in the other since there was no clear density for this mant moiety. Aspects of protein–nucleotide recognition in EssC-C are similar to the related Type IV pilus retraction (PilT) ATPase [40,41]. The nucleotide binds in a polar cleft created on one side of the β-sheet by several segments of the polypeptide fold. Both Walker A and B type motifs [42] are evident (Supplementary Figure S7). The β3–α1 loop encompasses the Walker A motif and also the N-terminal dipole of this helix, the β4–α2 and β10–α9 segments and the C-terminal part of β6 carries the Walker B motif. The Walker A motif lysine [43], Lys1007, and the backbone amides of Gly1004, Gly1006, Lys1007 and Thr1009 donate hydrogen bonds to α- and β-phosphates (Supplementary Figure S6). The side chains of Lys1007 and Thr1009 form hydrogen bonds with β- and α-phosphate groups respectively. The γ-phosphate participates in solvent-mediated hydrogen bonds to the protein and direct interactions with side chains of Ser1008, Asn1064 and Asp1015. Asp1101, in the Walker B motif, is probably protonated to allow this association. The adjacent residue in EssC-D2 is Asn1106 rather than the canonical acidic residue that primes a water molecule for nucleophilic attack on the γ-phosphate [44]. This is unusual and, to the best of our knowledge, no P-loop ATPase with such a variation of the Walker B motif has been described. Indeed a similar substitution of glutamine for the Walker B glutamate has been shown to abolish ATPase activity but not ATP binding [45,46].

The adenine N6 donates a hydrogen bond to the main-chain carbonyl of Ile1171, whereas N1 interacts with Gln1196 via a water molecule. In similar fashion, N7 is linked to Thr1009 OG1 and the Gly1006 carbonyl by another water molecule. Asp1207 holds the ribose in place by a hydrogen bond with the O2' hydroxy group. The mant group is accommodated in a hydrophobic pocket formed by Val1209 and Leu1210 on α9 and Ala1208 on α2 (Supplementary Figure S6).

A comparison of D2 with the structure of the slightly longer construct derived from the same protein (PDB code 4LYA [8]), independently determined, shows that the structures, although very similar, display a significant difference. In our structure the segment between residues Ile1171–Tyr1198 extends away from the core of the domain to form what we term the β9 segment in an ‘out’ conformation. In PDB code 4LYA, this segment is tucked back on the core structure forming two β-strands and a tight turn between them, the ‘in’ conformation (Figure 3). The first strand is positioned beside and interacts with the β5–α3 segment, whereas the second strand serves to extend the core β-sheet interacting with β5 on one side then β10 on the other. The turn is placed near the adenine-ribose components of the nucleotide ligand. The construct used to generate PDB code 4LYA starts at residue 951, whereas ours starts and at 961. The extended N-terminal structure in PDB code 4LYA forms an edge of the adenine-binding pocket, and participates in a number of interactions with the polypeptide that adopts the ‘in’ conformation. The presence of the ‘in’ conformation for the β9 segment and the N-terminal extension are, however, not essential requirements for nucleotide binding since ATP or a derivative was present in the ‘out’ conformation structure as well. Nevertheless, the striking conformational adaptability shown by the β9 segment hints at the possible structural changes that might occur as EssC supports a motor transport process.

The D3 domain

Domains D2 and D3 share a sequence identity of 16% and structural alignments within molecules A and B, of 194 and 179 Cα-atoms results in rmsd values of 2.8 and 2.6 Å respectively. Major differences are that helices α4 and α8 of D2 are absent from D3. The latter contributes to distinct polypeptide conformations for the β9 segment, which extend the core sheet by contributing β9 and β19 respectively. The β9 segment of D2 then participates in inter-molecular contacts as described above. The corresponding region of the polypeptide in D3 is folded over the central β-sheet adopting a conformation commonly observed in P-loop-containing NTPases.

In our structure the D3 domain appears incapable of ATP binding. Despite the inclusion of excess mant-ATP in the crystallization conditions we only observe the ligand to bind...
the D2 domain and this is consistent with binding data that suggest a stoichiometry <1. However, Rosenberg et al. [8] report a structure (PDB 4LYA) in which both D2 and D3 ATP-binding sites are occupied. A comparison of the structures indicates that conformational differences in the D3 P-loop produce a helical structure (α10), which occludes the ATP-binding site (Figure 4). The reasons for this difference are unclear, but comparisons clearly indicate conformational pliability in this ligand-binding site.

The Walker A motif is clearly recognizable in D3 (Gly\textsubscript{1284}–Thr\textsubscript{1301}) (Supplementary Figure S7). However, in some EssC orthologues, e.g. *Staphylococcus* spp., the third domain lacks ATP-binding motifs entirely, even though homology modelling predicts a similar fold. Although EssC from *G. thermodenitrificans* and *S. aureus* share an overall sequence identity of approximately 32\%, the similarities vary depending on specific domains, amounting to 65, 32 and 13\% when comparing the ATPase modules D1, D2 and D3 respectively. Very recently a genomic survey revealed that there is unexpected diversity in *S. aureus* EssC [47]. The EssC sequences were shown to fall into four different groupings, with the sequence diversity largely confined to the D3 module. Intriguingly, each of the four EssC variants was associated with different candidate suites of secreted substrates, implicating the D3 domain in substrate selectivity [47].

Site-directed mutagenesis to disable Walker A and B motifs contributions to ATPase and nucleotide-binding activity in the three domains of the *B. subtilis* EssC orthologue, called YukBA, revealed that only the enzyme activity of D1 is essential for secretion [48]. We speculate that D1 presents a well-conserved ATPase activity that is essential for the mechanics of translocation but that D2 and in particular D3 may have evolved to specialize by interaction with particular cargoes for the distinct secretion systems.

The D3 domain is essential for Type VII secretion

Informed by our structural models we carried out a truncation analysis to determine which EssC domains might be essential for T7SS function in a tractable model system. We designed truncations to produce *S. aureus* EssC lacking ATPase D3 alone (EssC\textsubscript{ΔD3}), D2 and D3 (EssC\textsubscript{ΔAD23}) or the N-terminal FHA domains (EssC\textsubscript{ΔFHA}; Figure 5). Removal of the most C-terminal ATPase module, D3, alone was sufficient to completely abolish secretion of either EssA or EssC substrates, without affecting the apparent stability or membrane integration of EssC (Figure 5 and Supplementary Figure S8). The deletion of D2 and D3 also abolished substrate secretion, although in this case truncated EssC was not detected in the membrane (Supplementary Figure S9).

Note that, it was necessary to provide this variant with a C-terminal HA tag since it lacks the epitope that is recognized by the EssC antiserum. Removal of the *S. aureus* EssC FHA domains also resulted in no detectable secretion of EssA or EssC but again no EssC variant could be detected by Western blotting. We conclude that the extreme C-terminal ATPase domain is essential for EssC activity possibly by interaction with cargo proteins and that the presence of D2 and FHA domains are required for the production of a stable protein.

Our findings contrast with a previous report that transposon insertions at either codon 1279, which is close to the start of encoding D3, or codon 721, which is part way through the sequence encoding D1, did not significantly affect secretion of EssA or EssB [2]. However, we could not rescue substrate secretion even if we induced expression of the EssC truncates with a high level of anhydrotetracycline (Supplemental Figure S8), although overproduction of non-truncated EssC did enhance substrate secretion suggesting that the amount of active EssC in wild-type cells may be a limiting factor for activity of the secretion system. Rosenberg et al. [8] suggest that the important contribution that D3 makes to the T7SS is in binding directly to a substrate, EssB, and that this enforces a multimerization to form the functional secretion apparatus. Although an attractive model, again, our data contradict this in that full-length EssC from *S. aureus* [37] and *G. thermodenitrificans* oligomerize in the absence of EssB. The data available suggest a complexity in the function of EssC that is not yet fully understood.

Comparison with FtsK-ATPase and the generation of a hexameric model

The conserved fold of the EssC-C D2 and D3 domains clusters with the PiT class of ATPases [40], in particular FtsK. A structural alignment of molecule A D2 with monomeric *Pseudomonas aeruginosa* FtsK (PDB code 2IUT [36]) gives an rmsd of 2.2 Å over 220 Ca-atoms and a Z-score of 22 with 20\% sequence identity (Figure 6). Molecule A domain D3 aligns with an rmsd of 2.8 Å for 220 Ca-atoms, a Z-score of 20, again with 20\% sequence identity. Notably, sequence comparison of domain EssC D1 with FtsK reveals a significantly higher sequence identity of 31\%. Although the core of these structures overlay well, the β9-segment feature of D2 is absent from monomeric and hexameric forms of FtsK (PDB code 2IUIU [36]). Rather, in this part of the ATPase domain it is D3 which matches most closely to FtsK. This is likely to be a result of the D2 ‘out’ conformation described above. A significant difference is the presence of an extended structure, or handle, in FtsK between α11 and β9, which...
Figure 4 A comparison of the P-loop conformations in D3 structures

Left: superimposition of EssC-C D3 (black ribbon) and the equivalent domain of PDB 4LYA (red ribbon). The bound ATP from PDB code 4LYA is depicted in similar fashion to the nucleotide in Figure 1. Right: a magnified view of the nucleotide-binding site shows the different conformations of the P-loop.

Figure 5 Truncation analysis of EssC

(A) Schematic representation of the S. aureus EssC truncations constructed during the present study. (B) Whole cell (left panels) or supernatant (right panels) samples were prepared from S. aureus strain RN6390 (wild-type) or the isogenic essC deletion strain harbouring pRMC2 alone (empty vector) or encoding the indicated EssC variants. Strains were cultured as described in the Materials and methods section, and expression from pRMC2 derivatives was induced by addition of 25 ng/ml anhydrotetracycline. For each sample 11 μl of culture supernatant and 4 μl (EssA) or 10 μl (EssC, TrxA) of cells adjusted to a D600 of 1 were loaded. Samples were separated on 15% Bis-Tris gels and immunoblotted with antibodies raised against the Ess secreted substrates EssA, EssC, and the cytoplasmic control TrxA. (C) Volumes of 10 ml of cells from the same samples in (B) were adjusted to a D600 of 1, separated on 8% Bis-Tris gels and blotted with an anti-EssC antibody (top panel). The same samples were probed with an anti-EsaA antibody as a loading control (bottom panel).

© 2016 The Author(s). This is an open access article published by Portland Press Limited on behalf of the Biochemical Society and distributed under the Creative Commons Attribution Licence 4.0 (CC BY).
Figure 6 Sequence and structural alignment of EssC-C D2 and FtsK

(A) Amino acid sequence alignment with assigned elements of secondary structure. The FtsK handle (dashed box), the D2 β9-segment (grey box) and signature motifs, as described in [53], are marked. The Walker A motif (red box), the invariant sequence pattern [A/G]XXXXGK[S/T], forms the P-loop that interacts with phosphate groups of the nucletide and the Walker B motif (blue box) residues (hhhhDE with h = hydrophobic residue). (B) Ribbon depiction showing the superimposition of EssC-C D2 (black) and the ATPase domain of P. aeruginosa FtsK (blue, PDB code 2IUT [36]). The bound nucleotide analogue mant-ATP is drawn as sticks.
The hexameric EssC-C model, with D2 (green) and D3 (orange), was generated by superimposition of D2 and the ATPase domain of hexameric FtsK (PDB code 2IUU [36]). EssC-C is drawn in cartoon representation with the bound nucleotide shown as sticks. A homology model of D1 is depicted as a grey semi-transparent van der Waals surface representation. The tube-like structure, formed by alignment of the three hexameric rings, is shown in side view (right).

corresponds to the positions of the EssC-C D2 α4–β6 and D3 α13–β16 loops. The FtsK handle (Pro570–Pro580) protrudes almost 20 Å from the C-terminal surface of the structure. In hexameric FtsK this extension mediates contacts between subunits and helps to create a stable dodecameric double ring assembly [36].

A model of a multimeric EssC-C assembly was constructed by rigid body superimposition of D2 with hexameric FtsK and no further manipulation (Figure 7). This model does not show any steric clash for the position of the D3 domains, either with other D3 or adjacent D2 domains. The resulting pore with an inner diameter of approximately 30 Å would accommodate the ESAT-6 family protein dimer, which is the prototypical T7SS substrate [1]. Notably, the ESAT-6 family member EsxA from \textit{G. thermodenitrificans} (PDB code 3ZBH), like the homologue from \textit{S. aureus} [49] is a cylindrical structure displaying a polar, primarily acidic, surface.

Conclusions

EssC and orthologues represent the only conserved membrane-bound component of the T7SS. This protein therefore represents a strong candidate as a component of the pore through which cargo is transported. EssC possesses ATPase-like domains as found in other proteins involved in transport processes and our data suggest that, in similar fashion, the full-length EssC forms a hexameric species. On the basis of comparison with the hexameric FtsK, we have generated a model which we propose represents the cytosolic entrance to the T7SS pore that would then be completed by the transmembrane helices.

Recent studies on the T7SS in the related \textit{Mycobacterium marinum} and \textit{Mycobacterium bovis} confirmed the critical role of the EssC homologue EccC5, in formation of an ESX-5 membrane complex that is functional for secretion [6]. Furthermore, on the basis of the observation that the middle and C-terminal domains of EccC5, equivalent to the D2 and D3 that we have studied, are affected by limited proteolysis, it was concluded that these domains are accessible and distant from the membrane. These observations match our model and this part of EssC, perhaps together with the FHA domains, might represent the hub for binding other T7SS components, including substrates. For \textit{S. aureus} EssC it has been demonstrated that the first P-loop-containing domain, D1, alone can provide a motive force for secretion of EsxA and EsxB [2]. The remaining two domains may then play an auxiliary or regulatory role. This is reminiscent of VirB4, a soluble ATPase component of the Type IV secretion system, which also displays similarities to the FtsK/SpoIII-type family. VirB4 binds to the side of the Type IV core complex and does not interact with the DNA cargo directly [50].

The intriguing structural similarity of EssC to DNA-transporting ATPases, together with reports on the relevance of T7SSs in DNA transfer [51,52], highlights the possibility that the T7SS, like the Type IV secretion system, is a versatile secretion system that might be involved in transport of protein and or DNA. Future studies will address this important issue.
ACCESSION NUMBERS

The co-ordinates and structure factor data for EssC-N and EssC-C have been deposited in the PDB under the accession codes 5FWH and 5FVO, respectively.

AUTHOR CONTRIBUTION

Martin Zoltner, Wui Ng, Jillian Money, Paul Fyle and Holger Kneuper performed all experiments. Martin Zoltner, Paul Fyle, Holger Kneuper, Tracy Palmer and William Hunter designed the study, analysed the data and wrote the paper.

ACKNOWLEDGEMENTS

We acknowledge the Diamond Synchrotron Light Source and the European Synchrotron Radiation Facility for beam time and excellent support, Samantha Kosto for mass fingerprinting analysis and Panjikar Santosh for discussions. TP is a Royal Society/Wolfson Merit Award Holder.

FUNDING

This work was supported by the Biotechnology and Biological Sciences Research Council [grant number H007571]; the Medical Research Council (U.K.) [grant numbers G117/519 and MR/M011224/1]; and the Wellcome Trust [grant numbers 082596 and 094090].

REFERENCES

Received 23 March 2016/26 April 2016; accepted 29 April 2016
Accepted Manuscript online 3 May 2016, doi:10.1042/BCJ20160257

© 2016 The Author(s). This is an open access article published by Portland Press Limited on behalf of the Biochemical Society and distributed under the Creative Commons Attribution Licence 4.0 (CC BY).