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Abstract. Interface exceptions (explicitly declared exceptions that a
method can propagate outside) are an inherent part of the interface de-
scribing the behaviour of a particular class of objects. Evolution of system
behaviour is thus necessarily accompanied by and reflected in the evolu-
tion of interface exceptions. While evolution of normal system behaviour
is adequately supported by various language mechanisms, such as sub-
typing and inheritance, few contemporary object-oriented programming
languages offer support for the evolution of interface exceptions. Some
languages permit specialising and deleting interface exceptions while sub-
typing, but none of them provides an adequate support for adding excep-
tions. In this paper we propose two complementary solutions for dealing
with additional exceptions introduced while system evolution. To solve
the problem of non-conforming interfaces resulting from the addition
of new exceptions in a development step, the first proposal uses rescue
handlers and the second one employs the forwarding technique.

1 Introduction

Organising exceptions into hierarchies and specialising exceptions along with the
specialisation of classes is in the spirit of the object-oriented paradigm. Few con-
temporary programming languages support a systematic hierarchical treatment
of exceptions in an object-oriented style. We analyse what a more permissive
object model supporting evolution of interface exceptions should be like, and
propose an improved model, supporting exception addition, that can be incor-
porated into existing languages.

When specialising a class into a subclass, it is often necessary to

– specialise interface exceptions to subtypes of the exceptions signalled by the
superclass

– remove interface exceptions signalled by the superclass
– add new interface exceptions, in addition to those signalled by the superclass

We study in detail these cases, focusing on the semantic implications that
they cause in resulting programs. Our analysis of the existing languages support-
ing an object-oriented style of exception handling, most notably Java [5], Arche



[6], and Modula-3 [2], indicates that, at best, these languages permit specialising
and deleting interface exceptions while subtyping, but none of them provides an
adequate support for adding exceptions.

We propose two type-safe solutions for the problem of non-conforming in-
terfaces resulting from the addition of new exceptions in a development step.
The first proposal is best suited for the top-down system development approach,
when we face the need to introduce an interface exception in a development step.
The need for introducing a new interface exception may arise, e.g., because a new
data structure can deliver new exceptional behaviour. This proposal is based on
extending a language with a new construct, a rescue handler, which steps in to
rescue the situation when no ordinary handlers are available. Our second pro-
posal is best suited for the bottom-up approach to system development, with
which we might want to match an existing class (e.g., from a class library) to an
existing interface (e.g., provided by a framework). If the class has extra interface
exceptions not signalled by the interface which the class matches otherwise, we
propose to employ the forwarding technique, widely used in practical system
development to solve the closely related interface mismatch problems.

2 Object-Oriented Exception Handling: The Object
Model

Exceptions are abnormal events which can happen during the program execution.
Most programming languages and systems provide special facilities and language
mechanisms for handling exceptions in a disciplined way. More modern object-
oriented languages support an object-oriented style of exception handling: they
allow arranging exceptions into classes and structuring them into class hierar-
chies. Apart from delivering better structuring, clarity and conciseness of the
resulting code, this approach also promotes genericity and polymorphism, char-
acteristic of the object-oriented style of program development, in the treatment
of exceptions.

Recognising the significant advantages of this approach, we also consider the
object model where exceptions are class instances, and classes of exceptions are
structured into hierarchies. Exceptions can be explicitly created by instantiating
the corresponding exception classes and can be initialised using constructors
with input parameters. Exceptions can also be created implicitly, when they are
raised or signalled. In this case a default (parameterless) constructor is invoked
to create an instance of an exception class.

An object, a method, or a block of code can be viewed as an exception
context, so that developers can declare exceptions and associate handlers with
such a context: when an exception is raised in an exception context, the control
is transferred to the corresponding handler.

In our view, an important feature of an exception handling mechanism is
its ability to differentiate between internal exceptions to be handled inside the
context and external exceptions propagated from the context. These two kinds of
exceptions are not clearly separated in many languages, although they obviously
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serve different purposes. The separation can be achieved under two conditions:
contexts are program units that have interfaces (e.g. classes or methods), and the
concept of exception context nesting is defined. Most of the existing exception
handling mechanisms use dynamic exception context, such that the context is
the method or the object being currently executed. Some mechanisms use static
exception contexts based on the corresponding object declaration.

The execution of the context can be completed either successfully or by prop-
agating an (external) interface exception. The propagated interface exception is
treated as an internal exception raised in the containing context. The simplest
example of the dynamic nested context is nested procedure calls. In fact, this is
the dominating approach to exception handling which suits well the client/server
or remote procedure call paradigms.

In our model, methods are dynamic exception contexts. Each method can
be dealing with a set of internal exceptions, each of which must have a corre-
sponding handler associated with the method. Internal exceptions are raised in
the method code and have to be handled inside the method. Each object type
(interface) can have explicitly declared interface exceptions; all interface excep-
tions that a method can signal are to be declared in the method signature using
a special signal clause. Interface exceptions are signalled by the method code
or by handlers associated with it. Note that interface exceptions of the method
called in another method are internal exceptions of the latter and have to be
handled at its level. We follow the termination model of exception handling [4].
With the termination model, after an internal exception has been handled, the
execution of the corresponding method is terminated and the control returns
back to the caller.

An example presented in Fig. 1 illustrates the difference between internal ex-
ceptions handled by the object’s methods and external (interface) exceptions
signalled outside the object to be handled by object’s clients. The class Bank
represents banks working with accounts of type Account, and its subtypes Cur-
rentAccount, and SavingsAccount. The method transfer of class Bank can be used
to transfer a certain amount of money from one account to another. If the speci-
fied current account fromAccount doesn’t have enough money, as signalled by its
withdraw method, an attempt is made to withdraw this amount from a savings
account. The method transfer has two interface exceptions: NotEnoughMoneyEx-
ception and SavingsAccountUsedException. The former is signalled if there is not
enough money to be transferred even on the savings account, and the latter is
signalled to inform the caller about the fact that the savings account has been
used (although the money has been successfully transferred). Internal excep-
tions NotEnoughMoneyException signalled by withdraw methods of fromAccount
and sAccount are handled inside the method transfer.

Only interface exceptions can be propagated outside the class in our model.
All possible violations of this rule must be either detected at compile time or
must cause a predefined Failure exception to be propagated outside the class.
This exception is signalled in some other situations, for example, when it is
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class Bank {
. . .
public void transfer (CurrentAccount fromAccount, SavingsAccount sAccount,

Account toAccount, int amount)
signals NotEnoughMoneyException, SavingsAccountUsedException

{
try {

fromAccount.withdraw(amount);
}
catch(NotEnoughMoneyException neme) {

try {
sAccount.withdraw(amount);
toAccount.deposit(amount);
signal new SavingsAccountUsedException();

}
catch (NotEnoughMoneyException neme) {

signal new NotEnoughMoneyException();
}

}
toAccount.deposit(amount);

}

Fig. 1. Example of the difference between internal and interface exceptions

impossible to leave the object in a known consistent state corresponding to one
of the interface exceptions.

For simplicity, we do not consider multiple inheritance.

3 Behaviour Refinement Requires Exception Evolution

3.1 Behaviour Evolution

The evolution of system behaviour is always performed as the evolution of system
components. Changes of the component behaviour often cause changes of their
interface. Very often the behaviour evolution results in increasing complexity of
software, forcing system developers to modify the system structure, to handle
this complexity. The most typical way of achieving this is by decomposing some
components into several subcomponents. These subcomponents can either be
hidden in a higher-level wrapping component which conforms to the interface of
the original component, or they can themselves replace the initial component
and be used by the original component’s clients.

There are multiple ways in which the system behaviour can evolve. The most
obvious are improving functionality of the components by replacing old frag-
ments of the design, e.g. code, with new better ones (refinement), and adding

4



new functionality (extension). Apart from these, there are also other forms of
evolution that deserve attention as well: deleting functionality and merging func-
tionality. These four forms of behaviour evolution cover the main possible direc-
tions in which system design can proceed.

Contemporary programming languages provide several language mechanisms
supporting behaviour evolution. The principle mechanism supporting behaviour
evolution in the context of object-oriented programming is inheritance. The
classical view is to associate inheritance with conceptual specialisation in sys-
tem modelling and design [8]. This form of inheritance, sometimes referred to
as strict inheritance, unifies subclassing (implementation inheritance) with sub-
typing (interface inheritance), forcing code reuse and behaviour evolution be
necessarily accompanied by conceptual specialisation. Since these two processes
are to a certain extent unrelated, this unification appears to be too restrictive
for dealing with evolutionary development of complex systems. In particular,
the addition of truly new properties requires re-constructing system parts from
scratch [8].

To overcome these limitations, the newer object-oriented languages, like Java
and Sather, separate interface inheritance responsible for conceptual specialisa-
tion, and implementation inheritance dealing with code reuse and behaviour
evolution. This results in separate subtyping and subclassing hierarchies. This
separation of concepts to a large extent facilitates system design and evolution,
because more creative ways of abstraction modification can be explored while
subclassing, without the need to maintain behavioural compatibility.

3.2 Conceptual Specialisation, Subtyping and Subclassing

Conceptual specialisation, sometime also referred to as subtyping, underlies the
evolution and behaviour refinement of object-oriented software. Subtyping poly-
morphism can be used to substitute subtype objects for supertype objects dy-
namically, at run-time. This permits clients of supertype objects to benefit from
conceptual specialisation by using more specialised subtype objects instead of
more general supertype objects. For example, method transfer of Bank can take
as argument toAccount an object of type CurrentAccount or SavingsAccount, both
of which are subtypes of type Account which is the declared type of toAccount.
Subtyping is usually denoted by <:, so that e.g. CurrentAccount <: Account, and
we will follow this convention here as well.

To ensure that all client’s requests for method calls on subtype objects can
be responded to by supertype objects instead, subtyping requires syntactic con-
formance of objects’ methods. In the simplest case, subtyping is type extension,
in the sense that a subtype has all the method signatures of its supertype and
possibly also new ones. For example, SavingsAccount is a subtype of Account if
in addition to methods Owner, Balance, Deposit and Withdraw of the latter it
also has a method PayInterest specific to savings accounts.

The subtyping relation, however, does not have to be a simple extension,
but can be more permissive in the sense that inherited method signatures can
be modified in a subtype so that the types of method input parameters become
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contravariant and the types of method output parameters become covariant.
Contravariance means that subtyping on the types of method parameters is in
the opposite direction from subtyping on the interfaces having these methods.
Respectively, covariance means that subtyping on the types of method parame-
ters is in the same direction as subtyping on the interfaces having these methods.
Contravariance in input parameter types and covariance in output parameter
types are the basic subtyping properties of function types [1]. As methods are
essentially (object state modifying) functions of input parameters returning out-
put parameters, they naturally have these properties as well.

The intuitive meaning of method input parameters is that clients should
be able to invoke methods on a subtype object, supplying it with input argu-
ments and obtaining from it results, the same way as they would invoke the
corresponding methods on a supertype object. Then input supplied by a client
should always be accepted by a subtype method and output produced by the lat-
ter should always be acceptable for the client. The contravariance restriction on
input parameters and the covariance restriction on output parameters addresses
these issues.

Suppose that we have interfaces Bank and Bank′ as shown in Fig. 2(a). Bank′

has the same method signatures as Bank, but with the difference that the meth-
ods OpenAccount, ValidAccount, Deposit, and Withdraw have the input parameter
of type SavingsAccount rather than Account. As we know, SavingsAccount is a
subtype of Account, and hence a SavingsAccount object can be passed where an
object of type Account is expected. In particular, passing it to the methods of
Bank expecting an input parameter of type Account will be type-correct. Accord-
ing to the typing rules, Bank is therefore a subtype of Bank′, i.e., Bank <: Bank′.
Covariance in output parameter types is illustrated in Fig. 2(b). Of the two
methods having output parameters, ValidAccount has the same output param-

a) b)

Bank'

OpenAccount(Person, Currency)

Deposit(SavingsAccount, Currency)

Withdraw(SavingsAccount, Currency)

WhichAccount(Number) : Account

Bank

OpenAccount(Person, Currency)

Deposit(Account, Currency)

Withdraw(Account, Currency)

WhichAccount(Number) : Account

Bank

OpenAccount(Person, Currency)

Deposit(Account, Currency)

Withdraw(Account, Currency)

WhichAccount(Number) : Account

Bank''

OpenAccount(Person, Currency)

Deposit(Account, Currency)

Withdraw(Account, Currency)

WhichAccount(Number) : SavingsAccount

Fig. 2. Contravariance in input type parameters a) and covariance in output type
parameters b)

6



eter type in both Bank and Bank′′, whereas WhichAccount in Bank′′ has the
output parameter type which is a subtype of the corresponding output param-
eter type in Bank. Any output produced by Bank′′ is a valid output of Bank,
because SavingsAccount objects are Account objects as well. Therefore, Bank′′ is
a subtype of Bank, i.e., Bank′′ <: Bank.

Subclassing or implementation inheritance allows the developer to build new
classes from existing ones incrementally, by inheriting some or all of their at-
tributes and methods, overriding some attributes and methods, and adding extra
methods.

In most object-oriented languages, such as Simula, Eiffel, and C++, subclass-
ing forms a basis for subtype polymorphism, i.e. signatures of subclass methods
automatically conform to those of superclass methods, and, syntactically, sub-
class instances can be substituted for superclass instances. As the mechanism of
polymorphic substitutability is, to a great extent, independent of the mechanism
of implementation reuse, languages like Java and Sather separate the subtyping
and subclassing hierarchies.

For simplicity, we will consider here subclassing to be the basis for subtyp-
ing and will analyse how behaviour refinement of subclasses with respect to
their superclasses influences evolution of exceptions. The same principles also
apply to systems with separate subclassing and interface inheritance hierar-
chies, although in these systems subclassing is not necessarily accompanied by
behaviour-preserving refinement and can just reflect a behaviour evolution.

3.3 Specialising Exceptions

Analysing the nature of interface exceptions, it is easy to see that like method
output parameters, they are entities returned from a method. As such, like out-
put parameters they are likely to have covariant nature. Indeed, if instead of
signalling an exception of type ArrayException in a subtype SortedArray of Ar-
ray, we will signal an exception SortedArrayException, clients using SortedArray
object and expecting an exception of type ArrayException should be able to deal
with its special case, SortedArrayException. Such covariant exception specialisa-
tion ensures that clients using a subtype object instead of a supertype object are
never faced with unexpected method results, in this case exception occurrences.

As it is perfectly type-safe to covariantly redefine (specialise) interface ex-
ceptions, some languages actually permit this kind of redeclaration. The object-
based language Modula-3 was one of the first to introduce some form of interface
exception specialisation, although exceptions are not classes here. A procedure
declaration includes a list of all exceptions that can be signalled. The language
allows procedure redeclaration while exporting interfaces: all exceptions that
a redeclared procedure can signal must be declared in the exported procedure
declaration.

Method declaration in Java can contain the throws clause that has to include
all checked exceptions that the method can signal. Java imposes the following
rule on the checked exceptions that method n overriding method m of the super-
class can throw: for every exception class listed in the throws clause of n, either
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the exception class or one of its superclasses must be listed in the throws clause
of m. For example, we can have

public interface Buffer {
void set (char) throws BufferError;

}

public interface InfiniteBuffer extends Buffer {
void set (char) throws InfiniteBufferError;

}

provided that InfiniteBufferError <: BufferError.
Naturally, this rule permits specialising one exception class in the throws

clause of the parent method to several of its subclasses in the overriding method.
A very similar approach is used for dealing with interface exceptions during

subtyping in the programming language Arche.

3.4 Removing Exceptions

Apart from specialising interface exceptions while subclassing, some existing
programming languages also permit removing them. For example, Java stipulates
the “Catch or Specify Requirement” which requires that a method either catches
an exception by providing an exception handler for that type of exception, or it
specifies that it can throw that exception. What this rule effectively permits is
removing in a subclass method an exception signalled by a parent method by
handling it internally. As example from [5] illustrates this situation:

public interface Buffer {
char get() throws BufferEmpty, BufferError;

}
public interface InfiniteBuffer extends Buffer {

char get() throws BufferError;
}

It is interesting to note that removing interface exceptions, unlike removing
methods, does not restrict the functionality of a subtype. While method removal
can by no means be viewed as behaviour-preserving and type-safe, interface ex-
ception removing indicates that exceptional or erroneous behaviour is reduced in
a subtype, and as such can be viewed as behaviour refinement. Clearly, removing
interface exceptions in a subtype preserves type safety. Clients using a subtype
object instead of a supertype object will never be faced with an exception they
are not ready to handle, because fewer exceptions are signalled by the server
object. Being prepared to handle the same exceptions as before, the clients will
carry out the actual handling less often.

As demonstrated by these examples, the existing languages support covariant
redeclaration of interface exceptions and their removal. However, considering
general ways in which systems can evolve (Section 3.1), it is clear that these ways
of inheriting, redeclaring and removing interface exceptions are too restrictive
and should be relaxed to support other forms of behaviour evolution as well.
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3.5 Exception Inheritance for Exception Evolution

Miller and Tripathi in [7] rightfully point out that the exception handling mecha-
nisms in existing object-oriented languages are oriented towards implementation
only and, as such, do not provide an adequate support for system development.
We are interested in a mechanism supporting implementation development as
well as system evolution. This kind of an exception handling mechanism will
help to bridge the gap between different models used at various stages of the
software life-cycle and to make the transition between different stages seamless.

First, we would like to identify the features that an exception handling mech-
anism supporting various forms of behaviour evolution should possess. For this,
let us consider all the possibilities one might potentially like to exercise in re-
declaring exceptions when developing a subclass. The existing languages allow
specialising exceptions, as discussed above, and removing them. Both forms of
exception evolution are useful but insufficient, because they cover only a part of
the complete picture. Exception merging is another form of exception evolution.
It seems to be possible that at some step of class evolution it will be decided
that several independent interface exceptions of a method have to be merged
into one exception. This can happen if we find out that they are caused by sim-
ilar reasons or that we do not want them to be different. For example, heap and
stack are usually implemented in the same space but one grows from the bottom
and the other one from the top. We may decide to merge the corresponding two
exceptions into a single no memory exception if they have to be treated in the
same way. Although it may be possible to propose some specialised solutions
supporting such functionality, for simplicity we consider that this problem can
be solved by deleting exceptions and adding new ones.

3.6 New Functionality – New Exceptions

When specialising or extending classes, the existing approaches to dealing with
interface exceptions at best permit to specialise and remove superclass interface
exceptions in subclasses. However, when developing complex software, developers
might be faced with the need to address system evolution requirements for which
these interface exception changes are too restrictive.

Consider, for example, the setting illustrated in Fig. 3. Suppose that initially
our design consists of classes Application and Document. An application works
with a number of documents and can create new documents, open existing doc-
uments and close documents. The correspondingly named methods in class Ap-
plication implement this functionality. A document provides methods that its
clients, in particular the application using this document, can invoke to open,
save, and close the document. For example, when an application needs to close
a specified document, it checks whether the document has been saved since the
last modification, saves it if it hasn’t and closes the document.

Suppose now that we want one document to be viewed and edited in several
windows. To achieve this, we employ the usual Observer Pattern [3], creating
new classes MyDocument and View, such that each MyDocument instance can
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Application

CreateDocument

NewDocument

OpenDocument

CloseDocument

MyApplication

CreateDocument

NewDocument

OpenDocument

CloseDocument

Document

Open

Close

Save

MyDocument

Open

Close

Save

AttachView

DetachView

Notify

docs

views

doc

View

Update

Fig. 3. Example of new functionality requiring new exceptions

be observed by a set of View instances. Views can be attached to and detached
from a document using the correspondingly named methods of MyDocument.
Whenever a document is changed in one of the views, it notifies each of its views
about the change by broadcasting the method Update.

The problem arises when we are trying to implement MyDocument’s Close
method. When an attempt is made to close a document which is simultaneously
modified is several windows, we would like to signal an exception MultipleView-
CloseException. But as method Close of Document does not signal any exceptions,
this redeclaration of its interface in MyDocument would be illegal in all the lan-
guages supporting only covariant interface exception redeclaration.

As demonstrated by this example, what we would like to have is more flex-
ibility, enabling the kind of interface exception redeclaration when a subtype
method can signal completely new exceptions. This observation is also made by
Miller and Tripathi, who note in [7]: “For exceptions, new functionality may need
new exceptions that are not subtypes of exceptions from the parent method”.
Further, the authors conclude that “[...] evolutionary program development sug-
gests exception non-conformance”.

Fortunately, this apparently desirable exception non-covariance (or “non-
conformance” in terms of [7]) can be successfully dealt with, to circumvent type-
theoretic problems. In the following section we present our proposal on how
to deal with non-covariant interface exception redeclaration, without sacrificing
the type safety provided by the existing exception handling mechanisms. In this
manner, a more flexible, yet safe, exception handling mechanism can be built.

4 Adding New Interface Exceptions

We envision two closely related ways of dealing with new interface exceptions
added in a subclass. The first approach is based on using rescue handlers –
default handlers attached to the class introducing new exceptions. The second
approach employs the forwarding technique.
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4.1 Using Rescue Handlers

The General Idea Consider a class C and its subclass C’, which inherits meth-
ods of C, overriding some of them, and adds some new methods. Suppose that a
method m of C signals an exception E and its counterpart in C’ signals instead
an exception D which is not a subtype of E. In addition, suppose that a new
method n of C’ signals an exception F.

As we know, clients of C might not be aware of the existence of C’ and the
handlers that these clients provide are only prepared to handle the exceptions
explicitly declared in the interface of C. On the other hand, clients of C’ which
see the new exception signalled by m can provide a handler for this exception.

To deal with the new exceptions for which no handlers are available in the
client code that invoked the methods signalling these exceptions, we define a
default handler – the rescue handler. We chose to call this handler a rescue han-
dler because it is used for the specific situation when clients do not know how
to deal with new interface exceptions of their servers, being unaware of their
existence, and the rescue handler steps in to rescue the situation. Clearly, this
rescue handler should be attached to a server class in which the new exceptions
are declared. Of course, it is easy to envision a scenario with which more than
one method of a subclass signals the same non-covariant exception; if we have
introduced a new data structure or some new functionality in C’ then several of
its methods might need to signal the exception D. In this case, a rescue han-
dler for a new exception signalled by a particular method of a class should be
associated with this method. This association of a rescue handler to a partic-
ular method rather than to the whole class might be necessary because rescue
handling of an exception might require variations depending on the method sig-
nalling it. Syntactically, attaching a rescue handler to a particular method will
amount to marking the rescued exception with the name of this method. When
no ambiguity arises or when one kind of rescue behaviour is satisfactory for all
methods signalling this exception, we provide a single rescue clause for each new
exception at the class level. We illustrate rescue handlers at both the class level
and the method level in Fig. 4. The rest of the discussion applies to both cases.

We view the rescue handler as an auxiliary code executed in the server context
when the client does not have the handler for the interface exception signalled
by the server. Rescue handlers can manipulate the server state, trying to recover
it (possibly with some degradation) or can transfer it to a state corresponding to
another server interface exception which will be signalled by the rescue handler.

An important point to note here is that this scenario is type-safe. The client
calling a method will never be asked to handle an exception which it does not
expect and for which it does not have a handler. The client only gets to handle
those exceptions that are declared in the interface of its declared server. The
new exceptions signalled by the server’s subclass are handled by a rescue handler
associated with the server’s subclass itself. The task of the compiler is then to
check that every new exception of the subclass has an associated rescue handler
attached to the subclass.
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C'

m() signals D

l() signals D

n() signals F

ClientOfC'
use

use

try {...c'.m();...; c'.l();...}

catch D {...}

catch F {...}

ClientOfC
try {... c.m(); ...; c.l();...}

catch E {...}

catch E' {...}

C

m() signals E

l() signals E'

rescue m::D {...}

rescue l::D {...}

C'

m() signals D

n() signals F

ClientOfC'
use

use

try {... c'.m(); ...}

catch D {...}

catch F {...}
rescue D {...}

C

m() signals E

ClientOfC

try {... c.m(); ...}

catch E {...}

a) b)

Fig. 4. Rescue handlers at class level (a) and at method level (b)

Using this approach, we can now solve the problem in our example of appli-
cations and documents. We can allow MyDocument’s Close method to signal the
new MultipleViewCloseException, and define a rescue handler for it, attached to
the class MyDocument. Such a rescue handler can, for example, close all views
open on the document and then close the document itself. Then any Application
instance invoking MyDocument’s Close method will never be faced with Multiple-
ViewCloseException unknown to it: the rescue handler will handle it and return
control to Application.

Moreover, the clients of MyDocument, aware of the fact that the method
Close of the latter can signal MultipleViewCloseException, can handle this ex-
ception in a more sensible manner, superseding the rescue handler provided by
MyDocument. For example, MyApplication which works with MyDocument di-
rectly, rather than via subsumption through Document, can define a handler for
MultipleViewCloseException that will pop-up a dialog inquiring the user whether
he really wants to close the document along with all its views, or only wants to
close specific views, leaving the document open in the other views.

Propagating an Exception Apart from providing some computations at-
tempting to fix the problem, or simply returning the object into a consistent
state, the rescue handler can also signal exceptions. Naturally, the exceptions
that it can signal must be either subtypes of the exceptions signalled in the cor-
responding parent method, or they also can be the predefined Failure exceptions.
More formally, for classes C and C’ such that
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class C {
void m() signals E1, . . . , En {

. . .
}

}

class C′ extends C {
void m() signals E′

1, . . . , E
′
k, F1, . . . , Fm {

. . .
}
rescue F1{. . . signal new H1() . . .}
. . .
rescue Fm{. . . signal new Hm() . . .}

}

where E′
1, . . . ,E

′
k are subtypes of some exceptions among E1, . . . ,En and F1, . . . ,Fm

are new non-covariant exceptions, every Hj, for 1 ≤ j ≤ m, must be a subtype of
some Ei, for 1 ≤ i ≤ n, or Failure:

(∀j | ≤ j ≤ m · (∃i | 1 ≤ i ≤ n · Hj <: Ei) ∨ Hj = Failure)

This rule extends to hierarchies of larger depth in an obvious manner, recur-
sively: if a method m defined in a subclass C′′ of C′ signals an exception G which
is non-covariant to either of E′

1, . . . ,E
′
k,F1, . . . ,Fm then a rescue handler for this

exception defined in C′′ can only throw exceptions that are either subtypes of
E′

1, . . . ,E
′
k,F1, . . . ,Fm or Failure.

Implementation Details Let us consider now how our proposal can be imple-
mented in practice; in particular, how the control is passed at runtime between
client objects and supplier objects signalling new exceptions. Two general sce-
narios are of interest here:

1. The client is not aware of the new exceptions and the rescue handler is to
be invoked

2. The client is aware of the new exceptions and its own handler is to be invoked,
superseding the rescue handler.

Suppose that we have a certain class NewSupplier extending some parent
class Supplier and overriding a method m of the latter so that it signals a new
(non-covariant) exception E.

class NewSupplier extends Supplier {
void m() signals E {

try {
S1;
signal new E();
S2;

}
catch (−internal exceptions−) {−handle internal exceptions−}

}
. . .
rescue E {RE}

}
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Suppose also that we have two clients for NewSupplier, the one using it
through subsumption and unaware of the new exception E (we will call it Client),
and NewClient which knows that it uses NewSupplier and is prepared to deal with
its new exception.

class Client {
void n() {

try {
T1;
s.m();
T2;

}
catch B {HB}
catch C {HC}
. . .

}
. . .

}

class NewClient {
void p() {

try {
U1;
s.m();
U2;

}
catch D {HD}
catch E {HE}
. . .

}
. . .

}

We illustrate the control flow for both scenarios in Fig. 5, using sequence
diagrams. As usual, the vertical dimension represents time and the horizon-
tal dimension represents the actors involved in a collaboration; time proceeds
down the page. Solid arrows denote method invocations and ordinary actions,
like assignments and iterative statements; dashed arrows denote control pass-
ing between the actors involved; finely dashed arrows denote exception handler
invocations.

Client

n

m

T
1

signal E

T
2

NewSupplier

S
1

[no handler for E]

search for rescue for E

R
E

NewClient

p

m

U
1

signal E

NewSupplier

S
1

[handler for E found]

H
E

return

return return

Fig. 5. Control flow for clients invoking a method signalling a new exception
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As shown in this diagram, when the method n is invoked on Client, the first
action to be performed is T1. For simplicity, we have shown this action as the one
performed on Client itself, but in reality it can be something more involved, like
a sequence of method invocations. The invocation of m on NewSupplier results
in transferring control to the latter, which executes S1 and then can signal the
exception E, which is new and unknown to Client. The control is passed to
Client, which searches for a handler for E and, having not found one, returns
the control back to NewSupplier. The latter searches for a rescue handler for
E, and having found RE executes it. Provided that RE successfully fixes the
problem, the control is returned back to Client which executes T2 and returns
control to the client which invoked method n. In case the rescue handler RE itself
signalled an exception, this exception is propagated to Client which reacts to this
exception in the usual way, handling it or propagating it further. Recall that all
exceptions signalled by RE are required to be either covariant to one of the
interface exceptions of Supplier’s method m, or the predefined Failure exception.

Consider now the collaboration between NewClient and NewSupplier. NewClient
is aware of the possibility that method m of NewSupplier signals E and is prepared
to handle it. When E is indeed signalled, NewClient catches it and invokes the
handler HE. This handler supersedes the rescue handler provided by NewSupplier.
It is interesting to note that, conceptually, the “ordinary” handler defined in the
client overrides the rescue handler in the server, although they are located in
different classes.

Strictly speaking, with (successful) rescue handling we deviate from the ter-
mination model of exception handling employed elsewhere in our model and use
the resumption model instead. The reason for this is that exception handling
takes place in the server context rather than the client context. If the server
itself has managed to correct the problem in the associated rescue handler, it
terminates normally and returns control to the client. There is no need to termi-
nate the client which can be left unaware of the exceptional situation that has
been successfully resolved and just proceed normally.

As we already mentioned above, our solution to the problem of new exception
introduction is type-safe. The type safety is imposed through requiring that a
compiler verifies that every new exception of a subclass has an associated rescue
handler attached to the subclass. To enforce this safety rule, we can always
provide a default rescue handler signalling Failure.

Inheriting Rescue Handlers When subclassing a class providing rescue han-
dlers for new exceptions, the rescue handlers are inherited and can be overridden.
When no new rescue clause is provided in a subclass, the one from the parent
method is inherited. To override a rescue clause for a particular exception, the
subclass should simply provide a new rescue clause for this exception. There
is no need to delete rescue clauses in a subclass, because even if we drop the
interface exceptions for which rescue handlers were defined in a superclass, no
harm is done if these handlers are inherited.
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An important special case of this rule is applied when a new exception is
covariantly redefined in a subclass of a subclass signalling and rescuing the new
exception. The designer of such a subsubclass may choose to either use the
existing rescue handler for the corresponding superclass exception or to develop
a new rescue handler. For example, if a subclass C’ of C signals a new exception
E and provides a rescue handler RE for it, then a subclass C” of C’ signalling
instead a subtype E’ of E can either inherit RE or redefine it with R′

E that can
be better suited to rescue E’. By default, when no new rescue clause is provided,
the one from the parent method is inherited.

4.2 Forwarding to the Rescue

Using rescue handling to solve the problem of new interface exceptions is per-
fectly suitable for the top-down system development approach, when we face
the need to introduce an interface exception in a development step. As discussed
above, the need for introducing a new non-covariant interface exception may
arise because a new data structure can deliver new exceptional behaviour.

However, rescue handling is of little help if we are to use a bottom-up ap-
proach to system development. With this approach, we might want to match an
existing class (e.g., from a class library) to an existing interface (e.g., provided
by a framework). It is quite likely to happen that the class has extra interface
exceptions not signalled by the interface which the class matches otherwise.

To reiterate our example of applications and documents, suppose that the
class MyDocument, described above, is supplied by a certain class library. Sup-
pose also that we have an object-oriented framework containing an interface
Document with methods Open, Close and Save. The class MyDocument almost
exactly matches the interface Document, except for the MultipleViewCloseExcep-
tion signalled by its method Close.

Fortunately, architectural solutions that have proven their usefulness in solv-
ing closely related interface mismatch problems, literally speaking, come to the
rescue in this situation as well. In particular, forwarding or the Wrapper Pattern
[3], is an architectural solution that allows clients using instances of NewClass,
which is an improved, more specialised version of some OldClass, but with a
slightly mismatching interface, instead of instances of OldClass.

The idea behind forwarding is to introduce a subclass of OldClass, Wrapper,
which aggregates an instance of NewClass and forwards OldClass method calls to
NewClass through this instance. We illustrate this forwarding scheme in Fig. 6.

OldClass

Wrapper NewClass

Fig. 6. Forwarding OldClass method calls to NewClass via Wrapper
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CloseDocument
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DocWrapper
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Save
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View

Update

MyDocument

Open

Close signals Multiple-

ViewCloseException

Save

AttachView

DetachView

Notify

doc

Document

Open

Close

Save

public void Close()

{

try { doc.Close(); }

catch MultipleViewCloseException {...};

}

Fig. 7. Forwarding Document method calls to MyDocument via DocWrapper

We can apply the same approach to solving the problem of mismatching
interface exceptions, if we turn the new interface exceptions of NewClass into
internal exceptions of Wrapper. The latter, having the same (or conforming)
interface as OldClass, simply forwards all method calls to the corresponding
methods of NewClass, catching and handling all NewClass’s interface exceptions
that cause the interface mismatch with OldClass. With this approach, clients of
OldClass can effectively use NewClass, without being concerned that the latter
signals an exception of which they are unaware.

In our example of applications and documents, we can solve the problem
caused by mismatching interface exceptions in the class MyDocument as illus-
trated in Fig. 7. The class DocWrapper implements the interface Document by
aggregating an instance of class MyDocument and forwarding all method calls to
the corresponding methods of MyDocument. The method Close of DocWrapper
is defined to forward the method call to MyDocument and catch the Multiple-
ViewCloseException that the latter can signal.

As Wrapper classes are just ordinary classes, they can be extended and reused
in the usual way.

The two approaches to handling new interface exceptions, the one employ-
ing rescue handlers and the one using the forwarding technique, nicely coexist,
complementing each other. If a class provides rescue handlers for some of the
interface exceptions signalled by its methods, and in addition the application us-
ing this class provides a wrapper class catching and handling these exceptions,
then the wrapper’s handler supersedes the rescue handler provided by the class.

5 Conclusions and Future Work

There is a significant gap between methods used for system modelling and design
at the earlier phases of the system development life cycle and the methods and
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mechanisms supporting the implementation development. One of reasons is a
different view these methods and languages have on the way interface exceptions
can evolve. In particular, none of the existing programming languages allows
adding interface exceptions, which is vital for adding new functionality during
system evolution. In this paper we have proposed two type-safe approaches which
can be introduced into object-oriented languages to make it possible to add
interface exceptions during subclassing. Our future research will focus on further
development of these ideas. The intention is to apply these features in design
and implementation of several case studies, to analyse possible implementations
of these language mechanisms and their overheads, and to propose a formalism
for reasoning about systems containing subclasses which have new exceptions
and which employ our approaches for dealing with them.
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