
School of Computing Science,
University of Newcastle upon Tyne

Dynamic Allocation of Servers in a
Grid Hosting Environment

Fisher, M., Kubicek, C., McKee, P., Mitrani, I.,
Palmer, J., Smith, R.

Technical Report Series

CS-TR-845

June 2004

Copyright c©2004 University of Newcastle upon Tyne
Published by the University of Newcastle upon Tyne,

School of Computing Science, Claremont Tower, Claremont Road,
Newcastle upon Tyne, NE1 7RU, UK.



1

Dynamic Allocation of Servers in a Grid Hosting
Environment

Mike Fisher1, Charles Kubicek2, Paul McKee1, Isi Mitrani2, Jennie Palmer2 and Rob Smith2

Abstract— A grid hosting environment is described, where
servers may be reconfigured dynamically from one type of work
to another in response to changes in demand. The problem of
carrying out these reconfigurations in the most efficient manner
is addressed by means of stochastic modelling and optimization.
A heuristic policy which is close to optimal over a wide range
of parameters is introduced. A prototype system based on
existing resource management software has been developed to
demonstrate the concepts described.

Index Terms— Reconfigurable servers, Optimal resource al-
location, Grid computing, Dynamic programming, Heuristic
policies.

I. INTRODUCTION

In a Grid environment, heterogeneous pools of servers
provide a variety of services to widely distributed user com-
munities. Users submit jobs without necessarily knowing, or
caring, where they will be executed. The system distributes
those jobs among the servers, attempting to make the best
possible use of the available resources and provide the best
possible quality of service.

The random nature of user demand, and also changes of
demand patterns over time, can lead to temporary oversub-
scription of some services, and underutilization of others. In
such situations, it could be advantageous to reallocate servers
from one type of provision to another, even at the cost of
switching overheads. The question that arises in that context
is how to decide whether, and if so when, to perform such
reconfigurations.

Consider a system consisting of N servers (possibly ge-
ographically distributed), split into M heterogeneous pools
of sizes K1, K2,...,KM , where

∑M

i=1 Ki = N . Pool i is
dedicated to a queue of jobs of type i (i = 1, ...,M ). Examples
of job types may include short web accesses, long database
searches, streamed media, etc. Different job types may have
different Quality of Service (QoS) requirements; e.g., some
may be less tolerant of delays than others). It is possible to
reassign any server from one queue to another, but the process
is generally not instantaneous and during it the server becomes
unavailable. In those circumstances, a dynamic reconfiguration
policy would specify, for any given parameter set (including
costs), and current system state, whether or not to switch a
server from queue i to queue j.

This paper addresses both the realization of the above
system, and the determination of optimal, or near-optimal,
dynamic reallocation policies. To our knowledge, the problem

1 BT Exact, Adastral Park, Ipswich, IP5 3RE, UK
2 School of Computing Science, University of Newcastle, NE1 7RU, UK
Contact e-mail: jennie.palmer@ncl.ac.uk

has not been posed and handled in this way before. There
are some commercial products ([7], [14]) which attempt to
increase server utilization through policy driven resource man-
agement; however, they are not concerned with job types and
QoS requirements. Chase et al. [3] consider the possibility of
switching servers between services to cope with demand. They
propose an ad-hoc policy which does not take either costs or
QoS requirements into account.

There is a body of work on optimal server allocation, but
it is mostly in the context of polling systems, where one
server visits several queues in a fixed or variable order, with
or without switching overheads (see [5], [6], [8], [9], [11]).
Even in those cases of a single server, it has been observed by
both Duenyas and Van Oyen [5], [6], and Koole [8], [9], that
the presence of non-zero switching times makes the optimal
policy very difficult to characterize explicitly. This necessitates
the consideration of heuristic policies. The only general result
available for multiprocessor systems applies when the switch-
ing times and costs are zero: then the cµ-rule is optimal, i.e.
the best policy is to give absolute preemptive priority to the
job type for which the product of holding cost and service
rate is largest (Buyukkoc et al [2]). A preliminary report
on the mathematical formulation of the problem discussed
here, without the architectural and implementation aspects,
was given by two of the present authors in [12].

The proposed architectural design, and the implemented
prototype, are described in section 2. The optimization prob-
lem, its solution, and the construction of the heuristic policy
are presented in section 3, while section 4 contains some
simulation results comparing different policies, including the
optimal and the heuristic.

II. POOL PARTITIONING AND SWITCHING

The aim of the system architecture is to allow servers,
partitioned into conceptual pools, to switch from one pool to
another. The switching decisions are governed by a switching
policy, which in turn uses system metrics gathered over time.
Networking technology allows a Resource Management Sys-
tem (RMS) to control servers over a wide area network, so a
conceptual pool may contain servers in different geographical
locations, provided that they all run the same reconfiguration
software. The main components needed to build the pool
partitioning architecture are described below. One machine
may play any, or all, roles at any given time.

• Server manager. Each individual computational server
runs the RMS software, and a daemon that allows the
server to be instructed to switch to another pool.

• Pool manager. This component manages a conceptual
pool. It runs an instance of the RMS in a central manager



2

mode, queueing and scheduling jobs on servers in its
control. The pool manager keeps track of the servers in
its pool, helps to coordinate switches of servers to and
from other pools, and obtains data such as queue length
to send to the cluster manager.

• Cluster manager. This dispatches submitted jobs to the
appropriate pool according to job type, collects demand
statistics and implements the reallocation policy. The
cluster manager obtains queue size information from each
pool manager; this is used, together with the collected
job data, in making reallocation decisions. The cluster
manager acts as a coordinator between two pools during
a server switch, and does not need to run an instance of
the RMS.

Figure 1 illustrates the organization of these components.

��
��

l l
��
��

l l ll
��
��

?
�

�	 ?
Z

ZZ~

? ?

?

6 6 6

??

?

�
�

�
�

All jobs

Type 1 Type MType 2

Pool 2datadata
Pool MdataPool 1

Pool 1 Pool 2 Pool M

cluster manager

...

...

...

Pool
managers

Servers

Fig. 1. Architecture of a cluster partitioned into pools

The different job types are registered with the cluster
manager during initialization. Information about the resources
required for each job type must be specified, so that each
server in a pool is configured correctly. The cluster manager
has a list of addresses which correspond to pool managers to
which jobs are to be sent.

Dispatching a job to a pool does not require a significant
amount of computation, so a queue is not likely to develop at
the cluster manager. The pool manager communicates with
the RMS through a proxy, allowing different RMSs to be
used in different pools. Together the cluster manager and pool
managers constantly monitor events in the system, including
job arrival and processing times. That information allows the
cluster manager to implement the desired server reallocation
policy.

To switch a server from pool i to pool j, pool manager i is
informed by the cluster manager of the decision to remove one
of its servers, and it is also told that the destination is pool j.
Pool manager i then chooses a server to be removed (e.g., an
idle machine) and initiates its reconfiguration. The latter may
include installing new programs downloaded from a software
server, and also perhaps changing the RMS to match the one
in pool j. If the target server is not idle, the jobs on it are
returned to the queue. Upon successful reconfiguration of the

server, pool manager i sends its details to the cluster manager,
which forwards them to pool manager j. Both pool managers
make appropriate adjustments, such as updating their lists of
current pool members and setting RMS parameters.

We have developed a prototype system to demonstrate
the functionality of the server manager, pool manager and
cluster manager components described above, and to show the
operation of a heuristic switching policy. It is not intended to
support a real hosting environment, and therefore does not use
a complex job description language such as RSL or JDSL.
Instead, it relies on Condor (see [10]), whose class-ads have
been wrapped in an XML document containing file transfer
information and job type. A simple file transfer mechanism
was developed, and Condor is used as a resource manager.
The switching that occurs involves only a server being taken
from one pool and added to another; the ‘reconfiguration’
of the server consists of making adjustments to instances of
Condor. A graphical interface allows a user to set system
parameters and to observe changes in state. The components
represent interfaces which allow different implementations to
be plugged-in, so the simple file transfer protocol may be
replaced by a system such as GridFTP.

During the initialization of the cluster manager, each pool is
registered, and servers are added to it, using an administrator
interface. The cluster manager then starts processing job
submissions. The prototype cluster manager employs a round-
robin polling pattern to obtain data from each pool. A call
is made twice a second to each pool manger, which returns
its current state (i.e., the size of its queue). The pool manger
communicates with both the cluster manager and each server
in its pool.

The Condor RMS was used in each pool to provide queue-
ing and scheduling facilities, and to dispatch jobs to servers,
together with any files they may need. Condor allows servers
to switch from one pool to another simply by rewriting a
configuration file. A job which is interrupted by a switch may
have to re-start from the beginning when a server becomes
available, or in some cases it may be check-pointed and
continue from the point of interruption. Another reason for
using Condor is that it is fairly straightforward to partition a
cluster of servers running the Condor daemons into multiple
pools by restarting some servers as pool managers.

The protocol invoked by the prototype when reallocating a
server from a source pool to a destination pool is illustrated in
figure 2. The reallocation decisions are controlled by a policy,
whose development is described next.

III. OPTIMIZATION AND HEURISTIC

The optimization problem can be formulated as a Markov
decision process, by making appropriate assumptions. Then,
given that there is a stationary optimal policy, the latter can
be computed numerically by truncating the state space to make
it finite.

The following assumptions ensure the Markov property:
• Jobs of type i arrive according to an independent Poisson

process with rate λi, and join a separate unbounded queue
(i = 1, 2, ...,M ).



3

- -
-

�

-
�

- -
�
��

�

manager
Cluster Coordinator pool manager

Destination Server

Server
configuration

initiate switch
release machine

response
add machine

machine ready
response

commit release
commit add

response
response

complete

Source pool
manager

reallocate machine destination

Fig. 2. A sequence diagram representing the switching protocol

• The required service times of type i are distributed
exponentially with mean 1/µi.

• The time taken to switch a server from pool i to pool
j is distributed exponentially with mean 1/ζi,j (i, j =
1, 2, ...,M ).

• Switching decisions are made at job arrival or departure
instants, and depend only on the current state.

For the purpose of this model, it is assumed that a service in-
terrupted by a switch is resumed from the point of interruption
when a server becomes available.

The primary QoS objective is to minimize appropriately
weighted job response times. To that effect, it is assumed that
a cost of ci is incurred for each job of type i, per unit time
that it spends in the system (i = 1, 2, ...,M ). These ‘holding’
costs reflect the relative importance, or willingness to wait,
of the different job types. In addition to the holding costs,
the switching of a server from pool i to pool j may incur a
monetary cost of ci,j .

The system state at any time is described by the triple,
S = (j, k, m) where j = (j1, j2, ..., jM ) is the vector of current
queue sizes (ji is the number of jobs in queue i, including
those being served), k = (k1, k2, ..., kM ) is the vector of
current server allocations (ki servers allocated to queue i) and
m = (mi,j)

M
i,j=1 is the matrix of switches currently in progress

(mi,j servers being switched from queue i to queue j, mi,i =

0). The valid states satisfy
∑M

i=1 ki +
∑M

i,j=1 mi,j = N .
The instantaneous transition rates of the Markov process

depend on the switching policy, i.e. on the decisions (actions)
taken in various states. Denote by rd(S, S′) the transition rate
from state S to state S′ (S 6= S′), given that action d is
taken. The possible actions are (a) do nothing, or (b) initiate
a switch from queue i to queue j (if ki > 0 and i 6= j).
These actions are numbered from d = 0 (do nothing) through
d = 1, 2, ...,M(M − 1). The values of rd(S, S′) are easily
expressed in terms of the parameters λi, µi and ζi,j . The total
transition rate out of state S, given that action d is taken,
rd(S), is equal to:

rd(S) =
∑

S′

rd(S, S′) .

The optimization may be carried out for a finite planning

horizon (minimize costs over a finite period of operation), or
an infinite one (minimize total future discounted costs). In both
cases, it is convenient to discretize the problem by applying the
technique of uniformization to the Markov process (e.g., see
[13]). This entails the introduction of ‘fictitious’ transitions
which do not change the system state, so that the average
interval between consecutive transitions ceases to depend on
the state, and then embedding a discrete-time Markov chain
at transition instants. First, we find a constant, Λ, such that
rd(S) ≤ Λ for all S and d. A suitable value for Λ is

Λ =

M
∑

i=1

λi + Nµ + Nζ , (1)

where µ = max(µi) is the largest service rate and ζ =
max(ζi,j) is the largest switching rate.

Next, construct a Markov chain whose one-step transition
probabilities when action d is taken, qd(S, S′), are given by

qd(S, S′) =

{

rd(S, S′)/Λ if S′ 6= d(S)
1 − rd(S)/Λ if S′ = d(S)

,

where d(S) is the state resulting from the immediate appli-
cation of action d in state S. This Markov chain is, for all
practical purposes, equivalent to the original Markov process.

Without loss of generality, the unit of time can be scaled so
that the uniformization constant becomes Λ = 1.

The finite-horizon optimization problem can be formulated
as follows. Denote by Vn(S) the minimal expected total cost
incurred during n consecutive steps of the Markov chain, given
that the current system state is S. The cost incurred at step l
in the future is discounted by a factor αl (l = 1, 2, . . . , n− 1;
0 ≤ α ≤ 1). Setting α = 0 implies that all future costs are
disregarded; only the current step is important. When α = 1,
the cost of a future step, no matter how distant, carries the
same weight as the current one.

Any sequence of actions which achieves the minimal cost
Vn(S), constitutes an ‘optimal policy’ with respect to the
initial state S, cost parameters, event horizon n, and discount
factor α.

Suppose that the action taken in state S is d. This incurs an
immediate cost of c(d), equal to ci,j if the action taken is to
switch a server from queue i to queue j. In addition, since the
average interval between transitions is 1, each type i job in the
system incurs a holding cost ci. The next state will be S′, with
probability qd(S, S′), and the minimal cost of the subsequent
n − 1 steps will be αVn−1(S

′). Hence, the quantities Vn(S)
satisfy the following recurrence relations:

Vn(S) =

M
∑

i=1

jici + min
d

[

c(d) + α
∑

S′

qd(S, S′)Vn−1(S
′)

]

.

(2)
Thus, starting with the initial values V0(S) = 0 for all S,

one can compute Vn(S) in n iterations. In order to make
the state space finite, the queue sizes are bounded at some
level, ji < J (i = 1, ...,M ). Then, if Vn−1(S) has already
been computed for some n and for all S, the complexity of
computing Vn(S), for a particular state S, is roughly constant.
There are no more than 2M + M(M − 1) states S ′ reachable



4

from state S, and M(M − 1) + 1 actions to be compared
(corresponding to the M(M−1) possible switches from queue
i to queue j and action d = 0 to do nothing). The best action
to take in that state, and for that n, is indicated by the value
of d that achieves the minimum in the right-hand side of
(2). Since there are on the order of O(JMNM−1+M(M−1))
states altogether, the computational complexity of one iteration
is on the order of O(JMNM−1+M(M−1)), and hence the
overall complexity of solving (2) and determining the optimal
switching policy over a finite event horizon of size n, is on
the order of O(nJMNM−1+M(M−1)).

If the discount factor α is strictly less than 1, it is reasonable
to consider the infinite-horizon optimization, i.e. the total
minimal expected cost, V (S), of all future steps, given that
the current state is S. That cost is of course infinite when
α = 1, but it is finite when α < 1. Indeed, in the latter case it
is known (see [1]), that under certain rather weak conditions,
Vn(S) → V (S) when n → ∞. When the optimal actions
depend only on the current state, S, and not on n, the policy
is said to be ‘stationary’.

An argument similar to the one preceding (2) leads to the
following equation for V (S):

V (S) =

M
∑

i=1

jici +min
d

[

c(d) + α
∑

S′

qd(S, S′)V (S′)

]

. (3)

The optimal policy (i.e. the best action in any given state) is
specified by the value of d that achieves the minimum in the
right-hand side of (3).

Equation (3) can be solved by the ’policy improvement’
algorithm (see Dreyfus and Law [4]). This iterative algorithm
can be applied to the present optimization problem as follows.

Step 1. Start by making an initial guess about the optimal
policy, i.e. construct an initial mapping, d = f(S), from
system states to action indices. This could be a simple
heuristic such as the cµ-rule (see [2]).

Step 2. Treat this guess as the optimal stationary policy, and
compute the corresponding discounted costs, V f , by solving
the large set of simultaneous linear equations:

V f (S) =

M
∑

i=1

jici +

[

c(f(S)) + α
∑

S′

qf(S)(S, S′)V f (S′)

]

.

(4)

Step 3. Now try to ’improve’ policy f . For every state
S, find the action d∗(S) which achieves the minimum value
in:

M
∑

i=1

jici + min
d

[

c(d) + α
∑

S′

qd(S, S′)V f (S′)

]

. (5)

In other words, minimize the total cost in state S, assuming
that after the current operation, policy f will be used.

Step 4. If action d∗(S) = f(S) for all states S, then
the policy f cannot be improved; it is optimal. Otherwise,
the next guess for the optimal policy is f(S) = d∗(S); repeat
from step 2.

The computational complexity of this algorithm is determined
by the complexity of each iteration, which is dominated by
step 2, and by the number of iterations. The simultaneous
equations can be represented in matrix and vector form as:

V = C + αQF (V ) (6)

where V is the matrix of unknowns, C is the vector of holding
and switching costs, Q is the matrix of transition probabilities
from state S to state S′, and F (V ) is an appropriate rearrange-
ment of the elements of V .

An iterative method has been used to solve the set of
simultaneous linear equations given in 6. Start with an initial
approximation to V , such as the holding cost in the current
state, V0(S) =

∑M

i=1 jici, then at the nth iteration compute

Vn = C + αQF (Vn−1) (7)

Since Q is a stochastic matrix and α < 1, this schema con-
verges geometrically. This iterative solution is more efficient
than Gaussian elimination for such a large state space, unless
α is very close to 1.

A. Heuristic policy

The idea behind our dynamic heuristic policy is to attempt to
balance the total holding costs of the different job types. That
is, the policy tries to prevent the quantities jici (i = 1, ...,M )
from diverging. The following rule is applied:

1. Evaluate the following quantity for each of the M(M−1)
possible switches from queue a to queue b (a 6= b and
ka > 0):

cb

{

jb +
1

ζa,b

[λb − µb min(kb, jb)]

}

− Kca

{

ja +
1

ζa,b

[λa − µa min(ka − 1, ja)]

}

,

where K is a constant used to discourage too many
switches from being initiated. The best value of K
depends on the total load. For heavily loaded systems,
K = 5 has been used.

2. Find the maximum of all quantities calculated in 1; if
it is strictly positive, this will be the most advantageous
switch to initiate. Take the action d 6= 0 corresponding
to this switch. Otherwise, take action d = 0.

This rule is based on approximating the effects of a switch.
If jb jobs of type b are present and kb servers are available for
them, then the average queue b increment during an interval of
length x may be estimated as x[λb−µb min(kb, jb)]. Similarly
for queue a, except that if a server is switched from queue
a then the available servers for this queue drops to ka − 1.
Thus, a server is switched if that switch would help to balance
the holding costs, after taking account of its effect on the M
queues. The above policy will be referred to as the ‘heuristic’.



5

IV. EXPERIMENTAL RESULTS

We start by examining the optimal switching decisions for a
modest model with 3 servers and 3 pools. In this example, the
arrival and service parameters of the three job types are the
same, but waiting times for type 1 are twice as expensive as
those for types 2 and 3. The discount factor is α = 0.95. The
stationary optimal policy for states where k1 = k2 = k3 = 1
and j1 = 0 is shown in table 1. The truncation level used in the
computation was J = 15, but the table stops at j2 = j3 = 9;
the actions do not change beyond that level. Actions d are
numbered as follows:

d=0, do nothing;
d=1, switch a server from queue 1 to queue 2;
d=2, switch a server from queue 2 to queue 1;
d=3, switch a server from queue 1 to queue 3;
d=4, switch a server from queue 3 to queue 1;
d=5, switch a server from queue 2 to queue 3;
d=6, switch a server from queue 3 to queue 2.

j3
0 1 2 3 4 5 6 7 8 9

0 0 0 5 5 5 5 5 5 5 5
1 0 0 0 3 3 3 3 3 3 3
2 1 0 0 3 3 3 3 3 3 3
3 1 1 1 1 3 3 3 3 3 3
4 1 1 1 1 3 3 3 3 3 3

j2 5 1 1 1 1 3 3 3 3 3 3
6 1 1 1 1 3 3 3 3 3 3
7 1 1 1 1 3 3 3 3 3 3
8 1 1 1 1 3 3 3 3 3 3
9 1 1 1 1 3 3 3 3 3 3

TABLE I
OPTIMAL ACTIONS: NON-ZERO SWITCHING TIMES, N = 3, M = 3,
j1 = 0, λ1 = λ2 = λ3 = 0.111, µ1 = µ2 = µ3 = 0.111, c1 = 2,

c2 = c3 = 1, ζi,j = 0.0909(i 6= j)

We observe that switching is discouraged, compared to the
cµ-rule. For example, when (j1, j2, j3) = (0, 2, 1) the optimal
decision is to do nothing, even though a job of type 2 is not
being served whilst a server at queue 1 remains idle. Only
when (j1, j2, j3) = (0, 3, 1) is the decision made to switch a
server from queue 1 to queue 2.

Next, compare the total average cost under three stationary
policies: the optimal policy obtained by the policy improve-
ment algorithm, the heuristic policy described in the previous
section and a ’static’ policy which allocates servers roughly
in proportion to the average offered loads and changes the
allocation only when those averages change.

The comparisons are carried out by simulation. The perfor-
mance measure in all cases is the total average holding cost,
i.e. the simulation estimate of E(

∑M

i=1 ciji). In each run, a
total of 200000 job completions were simulated.

The optimal policy was pre-computed for each set of
parameters and stored in the form of look-up tables. At every
decision instant, the simulation program consults the table
corresponding to the current state in order to find out what
action to take. For that reason, the simulation of the optimal
policy took the longest to run.

In all experiments, the parameters given below are renor-
malized to make the uniformization constant, Λ, equal to 1.

In figure 3, the average cost is plotted against the number of
servers, N when M = 3. The following parameters are used:
1000λ1 = λ2 = λ3; µ2 = µ3 = 1000µ1; c1 = 2, c2 = 1,
c3 = 1. Switching rates are equal and given by ζi,j = µ2/10
= µ3/10. Arrival rates are increased with N so that the total
offered load, ρ1 + ρ2 + ρ3, is equal to 4N/5 (i.e., the system
is quite heavily loaded). This models a system where type 1
jobs are much longer, and also more expensive to hold, than
types 2 and 3. Requests of type 1 arrive at a much slower rate
than for types 2 and 3, although the total load for each job
type is the same.

0

50

100

150

200

250

300

350

400

450

3 3.5 4 4.5 5 5.5 6

A
ve

ra
ge

co
st

Number of servers

static �

�
�

�

�
optimal +

+ + + +

heuristic •

• • •
•

Fig. 3. Policy comparisons: M = 3 and increasing N

The figure has two features which should be pointed out.
First, dynamic reallocation of servers definitely pays off. The
static policy performs poorly compared to the dynamic ones,
and the disparity becomes worse when N increases (for N =
6, the static policy is almost ten times worse than the heuristic).
Second, the heuristic policy performs almost as well as the
optimal policy. The difference between the two does appear
to increase with N , but the rate of increase is low.

The next experiment compares the static, optimal and
heuristic policies for a fixed number of servers (N = 4)
and number of pools (M = 3), but varying offered load.
The results are shown in figure 4. Here, all arrival rates are
equal and increase together so that the total offered load
varies between 2.6 and 3.6 (the system saturates and becomes
unstable when that load reaches 4). The following parameters
are used: µ1 = µ2 = µ3 = 1, ζi,j = 0.1. Holding costs for
type 1 are double those for types 2 and 3: c1 = 2, c2 = 1,
c3 = 1.

The features emphasized before are present again, and
are even more pronounced. The static policy collapses and
becomes unacceptable when the load exceeds 3.2, while the
heuristic is almost indistinguishable from the optimal policy
over the entire range.

We have also performed experiments where, in order to
model changes in demand, the simulation runs include a
sequence of phases, with λi changing values from one phase
to the next. There are two possible values for each λi: a high
rate and a low rate. In any one phase, a particular λi is set
at the high rate, while the remaining λi are at the low rate.



6

0

100

200

300

400

500

600

700

2.6 2.8 3 3.2 3.4 3.6

A
ve

ra
ge

co
st

Total load

static �

� �

�

�

optimal +

+ + + + + +

heuristic •

• • • • • •

Fig. 4. Policy comparisons: M = 3 and increasing loads

This models demand peaking for a particular job type over a
period of time. There were approximately 1000 phase changes
in such simulation runs. Those results are not included here,
because they exhibit the same general behaviour as figures 3
and 4.

V. CONCLUSION

A problem of interest in the area of distributed processing
and dynamic Grid provision has been examined. The appro-
priate system architecture is discussed and an implemented
prototype is described. The optimal reconfiguration policy can
be computed and tabulated, subject to complexity constraints
imposed by the size of the state space and the ranges of
parameter values. However, for practical purposes, an easily
implementable heuristic policy is available. The encouraging
experimental results suggest that its performance compares
quite favourably with that of the optimal policy.

Acknowledgement

This work was carried out as part of the collaborative
project GridSHED (Grid Scheduling and Hosting Environment
Development), funded by British Telecommunications plc and
the North-East Regional e-Science centre.

REFERENCES

[1] D. Blackwell, “Discounted dynamic programming”, Annals of Mathe-
matical Statistics, 26, pp 226-235, 1965

[2] C. Buyukkoc, P. Varaiya and J. Walrand, “The cµ-rule revisited”,
Advances in Applied Probability, 17, pp 237-238, 1985

[3] J.S. Chase, D.E. Irwin, L.E. Grit, J.D. Moore and S.E. Sprenkle, “Dy-
namic Virtual Clusters in a Grid Site Manager”, 12th IEEE International
Symposium on High Performance Distributed Computing, 2003

[4] S.E. Dreyfus and A.M. Law, “The Art and Theory of Dynamic Pro-
gramming”, Academic Press, New York, 1977

[5] I. Duenyas and M.P. Van Oyen, “Heuristic Scheduling of Parallel Het-
erogeneous Queues with Set-Ups”, Technical Report 92-60, Department
of Industrial and Operations Engineering, University of Michigan, 1992

[6] I. Duenyas and M.P. Van Oyen, “Stochastic Scheduling of Parallel
Queues with Set-Up Costs”, Queueing Systems Theory and Applications,
19, pp 421-444, 1995

[7] IBM on-demand business, http://www.ibm.com/e-business
[8] G. Koole, “Assigning a Single Server to Inhomogeneous Queues with

Switching Costs”, Theoretical Computer Science, 182, pp 203-216, 1997
[9] G. Koole, “Structural Results for the Control of Queueing Systems using

Event-Based Dynamic Programming”, Queueing Systems Theory and
Applications, 30, pp 323-339, 1998

[10] M. Litzkow, M. Livny and M. Mutka, “Condor - A Hunter of Idle Work-
stations”, Procs, 8th International Conference of Distributed Computing
Systems, 104-111, 1988.

[11] Z. Liu, P. Nain, and D. Towsley, “On Optimal Polling Policies”,
Queueing Systems Theory and Applications, 11, pp 59-83, 1992

[12] I. Mitrani and J. Palmer, “Optimal Server Allocation in Reconfigurable
Clusters with Multiple Job Types”, Procs, International Conference of
Computational Science and its Applications, Part II, pp 76-86, 2004

[13] E. de Souza e Silva and H.R. Gail, “The Uniformization Method
in Performability Analysis”, in Performability Modelling (eds B.R.
Haverkort, R. Marie, G. Rubino and K. Trivedi), Wiley, 2001

[14] Sychron http://www.sychron.com/


