
V. Srinivasan¹, C.L. Patchett¹ & P. J. Waterhouse².

¹ Department of Child Dental Health, Newcastle Dental Hospital, Newcastle upon Tyne. NE2 4AZ, UK.
² School of Dental Sciences, University of Newcastle upon Tyne. NE2 4BW, UK.

Correspondence to: Miss Claire L Patchett, Specialist Registrar, Department of Child Dental Health, Newcastle Dental Hospital, Richardson Road, Newcastle upon Tyne. NE2 4AZ. E-mail c.l.patchett@ncl.ac.uk.

Running headline: Review of alternative interventions and materials to formocresol

Key words: Pulpotomy, primary molar, formocresol, glutaraldehyde, electrosurgery, calcium hydroxide, mineral trioxide aggregate, lasers, ledermix, indirect pulp therapy, bone morphogenic proteins, collagen, pulpectomy
Summary

Aims: 1. To present a narrative review of the currently available alternative interventions and materials to formocresol pulpotomy, for the management of extensive caries in the primary molar. 2. To produce a clinical protocol for pulp therapy techniques in the extensively carious primary molar.

Introduction. The International Agency for Research on Cancer (IARC) has recently classified formaldehyde as carcinogenic to humans. As formaldehyde is a major component of formocresol, a safer alternative should be identified.

Method. A narrative review of the published literature for primary molar pulp therapy techniques was undertaken, following an extensive and appropriate literature search. A specialist group of paediatric dentists was formed to arrive at a consensus and establish an evidence-based protocol for the management of extensively carious primary molar teeth.

Part I of this paper explores the currently available alternative interventions and materials to formocresol in the form of a narrative review. The second part of the paper will present the formation of a specialist group to arrive at a consensus and establish an evidence based-protocol, for the management of the extensively carious primary molar.
Conclusion. After consideration of a review of extensively searched literature a protocol and key points document have been developed to assist clinicians in their treatment planning. Further long-term studies with the highest level of evidence (Randomised Controlled Trials) are required to enable us to identify acceptable alternatives, which can replace formocresol.

Introduction

The disquiet among the dental profession over the use of formocresol in the management of primary teeth has led in the past to the evaluation of possible alternatives to the medication. Following the criticism from the Cochrane Review of Pulp Therapy [1] regarding the paucity of appropriately designed, statistically assessed investigations, and the lack of long term outcomes, many studies have been reported and several others begun to contribute to the literature.

Furthermore the IARC (International Agency for Research on Cancer) in June 2004 has classified formaldehyde as carcinogenic to humans [2] leaving the profession to look for other viable alternatives to formocresol. An expert working group of the IARC evaluated the available evidence on the carcinogenicity of formaldehyde, the main ingredient in Buckley’s Formocresol solution, which is used as a pulpotomy medicament in the management of extensive caries in the primary molar. Based on the information made available, the expert working group has determined that there is now sufficient evidence that formaldehyde causes nasopharyngeal cancer in humans, a rare cancer in developed countries, limited evidence for cancer of the nasal cavity and paranasal sinuses and "strong but not sufficient evidence" for leukaemia.
Method

The different techniques employed to manage the cariously exposed vital primary tooth with reversibly inflamed coronal pulp and healthy radicular pulp tissue will be reviewed in this section. The procedure used must result in clinical and radiographic success and any techniques or agents used should be biocompatible with the pulp and surrounding tissues.

This is a traditional narrative review, which aims to consider and discuss alternative interventions to formocresol as a pulpotomy medicament in primary teeth. It differs from a systematic review in involving general discussion of a subject and has no stated hypothesis [3]. An extensive search of the reported literature from January 1966 to September 2004 was produced using the Medline, Embase and PubMed databases. The search strategy employed key words, which were each of the alternatives to formocresol considered in this paper in combination with each other and with formocresol. Although the Cochrane Review of Pulp Therapy covered similar ground [1], we hope to review the literature that has been made available since the review and also to highlight information, which could have been lost in the rigour of the Cochrane review.

The various procedures and medicaments reported in the literature have been previously classified by Ranly [4] according to the treatment objectives. The interventions reported in current literature can also be classified applying the same criteria as follows: devitalisation (formocresol, glutaraldehyde, electrocoagulation), preservation (ferric sulphate, calcium hydroxide, mineral trioxide aggregate, lasers) and remineralisation (indirect pulp therapy, bone morphogenic proteins, collagen), of the dental pulp in the primary molar with extensive caries. In addition to the above
interventions our review also includes pulpectomy (root canal therapy), which is indicated in teeth with irreversible radicular pulp inflammation.

Review of literature

1. **Devitalisation**

Glutaraldehyde

Glutaraldehyde was proposed as a new pulp tissue fixative by ‘s-Gravenmade in 1975 [5] and has been reported to be a better tissue fixative than formocresol [6]. This dialdehyde has a limited shelf life, cross-linking ability superior to that of formocresol, eliciting a different pulpal response to formocresol. Although this tissue effect is indicative of advantages as a pulpotomy agent, such advantages have yet to be adequately substantiated. Systemic distribution from pulpotomy sites [7, 8] cytotoxicity [9] and mutagenicity [10, 11] has been reported to be similar to formocresol.

Clinical studies have evaluated the use of 2% buffered glutaraldehyde applied for 5 minutes over the pulp tissue of primary teeth to achieve the fixative effect. A 98% success rate has been reported in a prospective study after a follow up for 19 to 42 months [12] with equal effectiveness for 1-3 minute applications. Fuks *et al.* [13] reported a success rate of 94.3% over six months which decreased to 82% after 25 months which is significantly lower than that reported for formocresol. Shumayrikh and Adenubi [14] reported the overall success rate for glutaraldehyde as 92.9% for an IRM dressing and 73.6% for a calcium hydroxide dressing after 12 months.
With similar toxic effects as formocresol, and no strong evidence of improved success rates, glutaraldehyde has not been accepted as an appropriate alternative to formocresol.

Electrosurgery

Electrosurgery is a non-pharmacological, haemostatic technique used for the amputation of the inflamed coronal pulp, prior to placing a lining material [15]. Anderman in 1982 [16] described the electrosurgical pulpotomy in primary teeth as a time-efficient method that is relatively free from postoperative complications. In electrosurgery, different currents producing different amounts of heat may be used to produce a surgical incision, coagulation or electrofulguration (destruction of tissue by electric sparks). The procedure carbonises and denatures the pulp tissue, producing a layer of coagulative necrosis, which acts as a barrier between the lining base material placed and the healthy radicular tissue beneath.

Electro coagulation has been evaluated and compared to formocresol on caries-free primary and permanent teeth in primates [17, 18, 19]. These animal studies are of limited benefit as in the clinical situation primary molars requiring pulpotomy are cariously exposed. It has also been suggested that contaminated pulp tissue might not promote adequate current penetration [18].

Conflicting reports have resulted from human clinical trials. From the study by Sheller and Morton [20] it was concluded that the success depended on the pre-existing pulpal status. However Mack and Dean [21] reported a high clinical and radiographic success rate in a study where teeth were reviewed from one to seventy
months, following electrocoagulation pulpotomy. The electrosurgical process cannot eliminate inflammation of the radicular pulp. Therefore, the success of the electrosurgical pulpotomy depends on the initial pulp status.

2. Preservation

Ferric Sulphate

Ferric sulphate (15.5%) has been investigated widely and reported in animal and human studies as a haemostatic agent in pulpotomy procedures. On contact with blood a ferric ion-protein complex is formed, and the membrane of this complex seals the cut vessels mechanically producing haemostasis and the agglutinated protein complex forms plugs, which occlude the capillary orifices preventing blood clot formation [22, 23].

The first animal study with ferric sulphate was carried out in monkey teeth by Landau and Johnsen in 1988 [24] to investigate usage prior to placement of calcium hydroxide over amputated pulps. It was intended to produce haemorrhage control in order to improve the efficacy of calcium hydroxide, as it’s failure was attributed to the persistence of an extra-pulpal blood clot [25]. Subsequent animal studies were carried out in baboons [26] and rats [27]. Fuks and her co-workers compared the pulpal responses of ferric sulphate and formocresol in baboon teeth [26]. Outcomes for both medicaments were equal after 6 weeks, with 60% of teeth in each group presenting with mild inflammation. Working in rat teeth Cotes and co-workers [27] confirmed similar inflammation in response to ferric sulphate and formocresol. Although there was more reparative dentine and fibrosis with ferric sulphate, these findings occurred in less than 40% of teeth treated.
Fei et al. reported the combined clinical and radiographic success at the end of a one-year prospective human trial [28] as 96% for ferric sulphate and 78% for formocresol. Ibricevic and Al-Jame reported results first at the end of 20 months [29] and later at 48 months [30] for teeth treated with ferric sulphate and formocresol. Although overall success rates were similar to those from Fuks and co-workers [31] the radiographic success rates for ferric sulphate fell from 97.2% after 20 months to 92% after 48 months follow up. Despite this, success rates were higher than those reported in the two retrospective studies by Burnett and Walker [32] and Smith et al. [33].

The ferric sulphate used in all the above studies was 15.5% except in the study by Casas and Kenny [34] where a 16% ferric sulphate equivalent in an aqueous vehicle was evaluated in comparison to pulpectomy (root canal therapy) in primary molars. Although at the end of two years this group reported statistically significant success rates in favour of root canal therapy in their sample, (teeth recommended for extraction: 39% for ferric sulphate and 9% for root canal treatment), at the end of three years the same sample size was insufficient to show significant results.

Based on the available evidence so far, ferric sulphate and formocresol produce equivalent outcomes. An evidence-based assessment of clinical trials of ferric sulphate and formocresol with Meta analysis [35] concluded that, in human carious primary molars with reversible coronal pulpitis, pulpotomies performed with either formocresol or ferric sulphate are likely to have similar clinical/radiographic success. This finding agreed with the Cochrane Systematic Review [1] of the pulp treatment for extensive decay in primary teeth.
Calcium hydroxide

Calcium hydroxide has been proposed as an alternative to formocresol for pulpotomies in primary teeth [36]. The main drawback of this alternative intervention is internal resorption, which was thought to be stimulated by calcium hydroxide. As the observed resorption has been ascribed to a blood clot intervening between the material itself and the pulp tissue various attempts have been made unsuccessfully, to prevent the formation of the extra-pulpal blood clot. These included minimizing the trauma to major pulp vessels and the resultant clots by performing a partial pulpotomy [25, 37], use of a haemostatic agent prior to the placement of calcium hydroxide [24, 38], and pulp amputation by electrocoagulation [39].

Various animal studies have been carried out to evaluate the pulpal response to calcium hydroxide, but as several animal models have been utilised comparison is difficult. The consensus of opinion from these studies appears to be that complete and incomplete dentine bridges are formed in amputated pulps beneath calcium hydroxide, which are similar in morphology to osteodentine. Beyond the calcific bridge is found a fibrous layer and vital pulp tissue [40, 41, 42].

Published data regarding the degree of clinical success of calcium hydroxide vital pulpotomy technique are varied. A success rate of 70% was obtained using a thick paste of calcium hydroxide and water as reported by Teuscher and Zander [43]. Via [44] Schröder [25, 37] and Doyle et al. [36] concluded that the calcium hydroxide treatment was associated with dentine bridge formation and complete healing of the stump of the amputated primary dental pulp; however, when the treatment failed
internal resorption was the cause. There was no such dentine bridge or healing process seen with formocresol in these studies.

Magnusson [45] obtained less successful results, with 12% clinical and 33% radiographic success from 120 pulpotomies in primary mandibular molars. Waterhouse et al. [46] reported a statistically insignificant difference in treatment outcomes between formocresol and calcium hydroxide pulpotomy. This group of workers implemented strict tooth selection criteria in their study i.e., absence of clinical signs and symptoms of coronal and radicular pulp necrosis including lack of spontaneous pain in addition to absence of radiographic signs of pulp necrosis. Working only within this remit of tooth selection criteria they concluded that calcium hydroxide in its pure powder form was a clinically acceptable alternative to formocresol.

Mineral trioxide aggregate

Mineral trioxide aggregate (MTA) was first described in the dental literature in 1993 [47] for repair of lateral root perforations. Since then the material has been evaluated in animal models for several applications in dentistry including root end filings [48, 49], direct pulp caps [50, 51, 52], perforation repair in furcations [53, 54] and apexification [55, 56]. These histological animal studies report optimum biocompatibility with the periapical tissues [48, 49] and the pulp [50, 51, 52] in addition to the material’s sealing ability [49].

MTA (Pro Root, Dentsply, Tulsa Dental) is available as Pro Root Gray or Pro Root White [57]. White Pro Root has been introduced as an aesthetic improvement over the
original material, for placement in anterior teeth. The major components of White MTA are tricalcium silicate, dicalcium silicate, tricalcium aluminate, calcium sulphate dehydrate and bismuth oxide (Dentsply Tulsa Dental, 2001). The manufacturer however does not disclose the ingredients responsible for masking the greyness of the original Pro Root.

Torabinejad et al. [58] have described some of the physical and chemical properties of MTA. MTA is biocompatible and provides a better seal than zinc oxide-eugenol and amalgam. It is available in powder form, which sets in the presence of moisture, with a setting time of four hours. Koh et al. [59] demonstrated that MTA has the ability to stimulate cytokine release from bone cells, indicating that it actively promotes hard tissue formation. Torabinejad and Chivian [60] proposed MTA as a potential medicament for pulpotomy procedures as well as capping of pulps with reversible pulpitis in addition to many other applications in dentistry.

MTA was first tested on traumatically exposed pulps in monkey teeth as a pulp capping material and found to produce favourable results [61]. No pulpal inflammation was observed after five months in comparison to calcium hydroxide, which elicited pulpal inflammation in all samples.

Eidelman and co workers [62] reported a study in which MTA was compared to formocresol. Follow up evaluation was reported for a period ranging from six to 30 months and revealed only one failure in a molar treated with formocresol and no failures in teeth treated with MTA. Although pulp canal obliteration was observed in two out of 15 teeth treated with formocresol (13%) and seven out of 17 teeth treated
with MTA (41%), it was not regarded as an unfavourable outcome. Although the sample sizes were small, MTA was proposed as a suitable alternative to formocresol in primary teeth.

More recently Agamy et al. [63] reported a prospective clinical trial comparing White MTA, Gray MTA and formocresol. Gray MTA appeared to be superior to both white MTA and formocresol as a pulp dressing for pulpotomised primary teeth. This study found a high percentage of pulp canal obliteration (58% with the Gray MTA, and 5% with white MTA), but no obliteration in the group treated with formocresol. There was a significant difference in the clinical and radiological outcomes between the White MTA group and the Gray MTA group, with the latter performing better. However, comparable outcomes were achieved with the white MTA and formocresol at the end of 12 months. Histologically, both types of MTA successfully induced a thick dentine bridge at the amputation sites, while formocresol induced thin, poorly calcified dentine.

The lack of internal resorption in the above studies in the teeth treated with MTA contrasts with the studies that reported internal resorption in response to zinc oxide eugenol [64], ferric sulphate [33, 31], and calcium hydroxide [36, 38]. The lack of internal resorption in addition to the biocompatibility, sealing ability and promotion of hard tissue formation seem to favour further research involving long-term follow up on the use of MTA for pulp therapy in primary molars.

Presently, a drawback to the clinical use of MTA is it’s cost relative to other agents, and perceived problems with its storage. A carton of Pro-Root MTA contains, 5-one
gramme sachets of the material costing approximately £ 121.45 (€ 178.00, US $ 232.52). The composition of MTA is similar to that of the cement used in the building industry to make concrete. Such a material should be kept dry during storage as moist air leads to the phenomenon of air setting [65], which reduces the strength of the mix. Once such a material is opened from the air-seal packaging, it should be sealed in an air-tight and water-proof container. Significant strength losses begin to occur after four to six weeks. The same could be applied to the MTA when used in dentistry. The manufacturer recommends the marketed 1 gramme sachet for single use, which would result in considerable wastage of the material. Once the sachet is opened and the required amount used, the remaining material may be stored up to four weeks in a water and airtight container such as an Eppendorf tube (Eppendorf UK Ltd, Personal Communication J M Whitworth, 2004).

Lasers

Since the development of the Ruby laser in 1960, different forms of lasers have been evaluated in animal studies for their applications in dentistry. However, their use in pulpotomies was first published in 1985 when Shoji et al. [66] evaluated the carbon dioxide laser in canine models.

Subsequent studies showed conflicting results with respect to pulpal healing following laser pulpotomy [67, 68, 69]. While Shoji et al. [66] reported no detectable change in the radicular portion of the pulps, Wilder-Smith and Dang et al. [68] found that secondary dentine was formed and a regular odontoblast layer was present. A carbon dioxide laser was compared to the ND:YAG laser by Jukic et al. [70], who reported
that laser irradiation caused carbonisation, necrosis, inflammatory infiltration, oedema and haemorrhage in the pulpal tissues. Further animal studies have been published evaluating other types of lasers, i.e., Nd: YAG lasers [71, 72], GA As laser [73], Argon laser [74] and Er: YAG laser [75]. The results from the different animal studies have been conflicting with respect to histological evidence of repair with a newly formed dentinal bridge.

The only randomised controlled human clinical trial using a laser pulpotomy technique involved caries-free primary cuspids, which were scheduled for serial extraction [76]. These teeth were subjected to either formocresol or carbon dioxide laser pulpotomy. The teeth were evaluated clinically and radiographically at 28 and 90 days and histologically after extraction. Carbon dioxide laser treatment compared favourably to formocresol for pulpotomy in primary teeth.

Although animal studies have been carried out, further human clinical trials are recommended, which will take the use of laser for pulpotomy in primary molars into the next stage of research.

Ledermix

Ledermix (Lederle Pharmaceuticals, Wolfrathausen, Germany) contains the steroid triamcinolone acetonide as its primary active component and the broad-spectrum antibiotic calcium demethylchlortetracycline. The product is available as a single tube cream and two-component tube cement.
In the canine model Ledermix has been evaluated for its effect on the pulp tissue exposed as a result of trauma (77) in comparison to formocresol, which is a fixative; tetrandrine, which is a bibenzylisoquinoline alkaloid with broad-spectrum anti-inflammatory properties, with saline as a control. Histological evaluation after 3 days for acute inflammation (neutrophil infiltration) and 6 weeks for chronic inflammation (lymphocytic infiltration) revealed a statistically significant (P > 0.01) difference between the medicaments. Both acute and chronic inflammatory responses were achieved in the following ascending order: Tetrandine, Ledermix, Buckley’s Formocresol and Saline.

The effects of calcium hydroxide have been compared to a combination of calcium hydroxide and Ledermix (78) on cariously exposed canine pulps. Both these interventions showed no difference in inflammation after 7 and thirty days, with no inflammation after 90 days. Other workers (79) also reported similar findings in monkey teeth.

The histologic effects of Ledermix cream and cement on the unexposed and traumatically exposed pulp in permanent teeth have been reported (80). The histologic changes observed beneath cavities without pulp exposure were localized to the odontoblast-predentine area, and the reactions to the cement were less conspicuous than those to the cream. When placed directly on traumatically exposed pulps, preparations rarely produced any histological changes in the soft tissue. However moderate to severe inflammation has been reported as a possible response to Ledermix, when placed as a wound dressing following pulpotomy in cariously exposed vital primary teeth (81).
The anti-inflammatory effect of corticosteroids used locally in pulp capping of permanent teeth was widely reported in the 1960. Hansen and co-workers [81] reported the only available clinical study of Ledermix as a dressing, to cover the pulpal wound following pulpotomy of cariously exposed primary teeth. This study compared the effect of Ledermix and zinc oxide eugenol as wound dressings following vital pulpotomy in primary molars over an observation period of one to forty two months. Seventy nine percent of the teeth treated with Ledermix and 57% of the teeth treated with Zinc oxide eugenol were reported to be clinically and radiographically successful. Teeth exhibiting internal and external resorption were deemed as treatment failures and extracted and subsequently evaluated histopathologically. Less significant inflammation was observed beneath the pulp wounds dressed by Ledermix in comparison to the zinc oxide eugenol group. No difference was observed in the inflammation present in the apical part of the roots of the teeth studied.

From the literature there appears to be minimal data to support the use of Ledermix as a wound dressing following pulpotomy in the primary teeth.

3. Remineralisation

Indirect Pulp Therapy (IPT)

Indirect pulp therapy involves the removal of caries, leaving a thin layer of stained dentine at the deepest sites of a cavity where complete caries removal would result in pulp exposure [82, 83]. Removal of caries from the lateral wall ensures complete sealing of the tooth and restorative material interface, thereby isolating the bacteria
from their nutrient source, resulting in reduction in their number or death [84, 85, 86, 87].

The indication of IPT is limited to teeth that have no signs of irreversible pulp pathology based on a clinical and radiographic examination and direct evaluation of the cavity preparation [88, 89, 90]. In addition to careful case selection, knowledge of tooth anatomy, clinical experience and a good understanding of the process of caries progression are required [91]. The use of an antibacterial agent such as calcium hydroxide and restoration of the cavity with adequate marginal seal will eliminate any bacteria, which remain.

Studies in permanent teeth [92, 93, 94, 95] have reported that the remaining deep dentine in teeth treated by indirect pulp therapy is mostly remineralized and hardened. These studies suggest that optimal coronal seal prevents caries progression beneath the restorations. In view of the thinner dentine in primary teeth compared with permanent teeth, re-opening a restoration for removal of the suspected residual caries is therefore more likely to cause pulpal exposure, and is hence inappropriate.

A prospective study by Falster et al. [91] in primary molar teeth, where two groups of teeth were restored with a composite resin, reported that a total etch technique without the placement of a calcium hydroxide lining may produce a similar effect upon residual bacteria to that of calcium hydroxide. All restorations were placed using the optimal isolation of dental dam. Success rates at two years were 96% for the total etch technique and 83% for the calcium hydroxide lining technique. The high success
rate was attributed to the correct diagnosis, case selection, and appropriate restorative technique rather than the placement of a calcium hydroxide lining per se.

Two retrospective human clinical studies using IPT in primary teeth, reported success rates exceeding 90% over a mean follow-up time of 4.2 years [90] and two weeks to 73 months [97]. The first group of workers reported a comparative 82% success rate for formocresol pulpotomy in comparison to IPT. IPT is a promising technique, which warrants further prospective clinical evaluation.

It is important to appreciate the difference between IPT and Atraumatic Restorative Treatment (ART). ART involves excavating cavitated dentine caries with hand instruments only and restoring the cavity with a chemically adhesive restorative material and sealing any associated fissures and pits. The technique was initially recommended in countries where highly trained dentists and the electricity needed for clinic equipment is not readily available [98]. Although IPT and ART share the similar concept of sealing the cavity from the oral environment leading to a reduction in the number of microorganisms, ART can be practised in cavitated teeth, especially those with single surface decay only. Also glass ionomer cement which is the material of choice in the ART, has inadequate physical and mechanical properties which influence the long term survival of the restorations.

Bone morphogenic proteins

Bone morphogenic protein (BMP) is a generic term for a family of proteins that has bone inductive properties. It was observed as early as in 1965, that demineralised bone matrix was capable of stimulating bone formation when implanted in ectopic
sites [99]. It was concluded that factors capable of autoinduction were present in the bone matrix and the term bone morphogenic proteins was proposed. BMP are osteogenic proteins, which form part of the Tumour Growth Factor (TGF-β). They are implicated in cell differentiation, tissue morphogenesis, regeneration and repair. BMP-like activity has been identified in dentine matrix and BMP genes are expressed during tooth development and dentinogenesis [100].

Promising results have been published in this area of research based on animal models in permanent teeth with non-inflamed pulps. It has been proposed that BMP stimulated the induction and differentiation of mesenchymal cells with varying degrees of dentine bridge formation [100, 101, 102] in swine, monkey and canine teeth. Although these studies suggest that reparative dentine can be induced on contact with BMP, dentine bridge formation itself is not a sign of pulpal healing and healing pulps are evident in teeth where dentinal bridge formation does not occur [103].

Collagen
Collagen products have been evaluated in animal studies as pulp medicaments. The use of cross-linked collagen gel [104], and enriched collagen solution [105, 106], has been reported as pulpotomy medicaments in animals. Varying histological responses have been demonstrated including complete regeneration of pulpal tissue and dentine bridge formation. These were experiments carried out on non-inflamed pulps, and not a true reflection of the response of a pulp exposed by caries. However, presently no clinical studies have been reported on the use of collagen as a medicament to be used as an alternative to formocresol.
Pulpotomy Medicaments – Conclusions

From the published data available we conclude that ferric sulphate, MTA and IPT appear promising alternatives to the single visit formocresol pulpotomy for cariously exposed vital primary molar teeth. Ferric sulphate use is arguably technique sensitive and MTA has cost implications. The use of lasers and electrosurgery is not routine in all dental settings and may not be readily available. In view of the promising results obtained so far, it’s relatively user-friendly technique for the operator and the patient in comparison to ferric sulphate and it’s expense in comparison to MTA, IPT emerges as one of the potential alternatives. This is especially so in asymptomatic primary molars with no radiographic signs of pathology. However, further research is required to increase our knowledge of the clinical efficacy, histological effects and systemic impact of all the possible alternatives reviewed here, in addition to providing sufficient evidence-base for developing Policy Documents and Guidelines. Therefore long-term studies with the highest level of evidence (Randomised Controlled Trials) are required to enable us to identify acceptable alternatives which can replace formocresol.

Pulp removal

The final section of this review will consider the available literature on pulpectomy (root canal therapy) as it could be considered as an option in primary molars with varying degrees of coronal and radicular inflammation in addition to those with necrotic pulp and therefore non-vital.
Pulpectomy

Previously, teeth with irreversible radicular pathology or necrotic pulp tissue could be treated with formocresol in a non-vital pulpotomy technique. The authors accept that this is perhaps no longer an option and hence we must seek alternative non-vital techniques.

The aim of pulpectomy is to attempt to retain a tooth that would otherwise be extracted, and in doing so prevent space loss and disturbance to the permanent dentition [107]. Pulpectomy is indicated where the radicular pulp is non-vital and irreversibly inflamed [108]. It is not suitable when there is evidence of extensive internal or external root resorption, or if greater than one third of the root length has been lost [83]. Single visit pulpectomy is also an acceptable alternative to formocresol pulpotomy [34].

A number of root filling materials have been suggested. An ideal material for root canal therapy of the primary molar should resorb at a similar rate to the primary root, be rapidly eliminated if accidentally extruded through the apex, harmless to the periapical tissues and the succedaneous tooth germ, easy to manipulate in order to fill the root canals, easily removable, radiopaque and not result in discolouration of the tooth [109]. The most commonly used medicaments for primary molar root canal therapy are zinc oxide eugenol paste (ZnOE), iodoform paste and calcium hydroxide.

Pure ZnOE paste has been shown to produce high clinical success rates, which are comparable to those of calcium hydroxide [110]. Casas et al. (2004) found that survival rates for primary molars treated with ZnOE pulpectomy were significantly
greater than those treated with ferric sulphate pulpotomies at three years [34]. Until recently, ZnOE has been the material of choice, but concerns have been expressed regarding the difference between its rate of resorption and that of the tooth and its slow absorption when pushed into the apical tissues [107]. It is not known whether this has a significant clinical effect. Some studies have identified patients where use of ZnOE in the primary tooth has resulted in deflection of the permanent successor [111] and Coll and Sandrian (1996) suggest that this may occur in as many as 20% of cases [112].

Several authors have reported the use of KRI paste (Pharmachemie, Haarlem, The Netherlands), which is a mixture of iodoform, camphor, parachlorophenol and menthol [113, 114]. This medicament resorbs rapidly and does not appear to have an adverse effect on the permanent successor. Its success rates have been reported as being between 84-100% [113, 114]. Studies have found unfavourable responses of periapical tissues to KRI paste and increased cytotoxicity when compared with ZnOE [115, 118]. Maisto’s paste has also been described [115]. It is essentially KRI paste with the addition of zinc oxide, thymol and lanolin.

Calcium hydroxide has favourable antibacterial effects, is easily resorbed and causes no foreign body reaction. Mani et al (110) showed high clinical success rates over a six-month period and although a depletion of material from the root canals was noted, this did not appear to be clinically significant. Recent research [111] has investigated the use of a premixed calcium hydroxide and iodoform paste (Vitapex, Neo Dental Chemical Products Co, Tokyo, Japan). This study demonstrated a combined clinical and radiographic success rate of 100% for Vitapex in comparison to 78.5% for ZnOE.
These high clinical success rates, a lack of toxic effects and deleterious effects on the succeeding tooth combined with its radiopacity and resorbability have lead authors to herald this as a near ideal primary tooth filling material [117].

Conclusion

This review of the currently available literature highlights the advantages and disadvantages of the alternative interventions and materials for the management of the extensively carious primary molar in comparison to formocresol. The process of the literature review promoted debate, which facilitated the development of a local clinical protocol.

References

44. Via W. Evaluation of deciduous molars treated by pulpotomy and calcium hydroxide. *Journal of the American Dental Association* 1955; **50**: 34-43.

73. Kurumada F. A study on the application of Ga-As semiconductor laser to endodontology. The effects of laser irradiation on the activation of

