Is there life after Buckley’s Formocresol? Part II - Development of a protocol for the management of extensive caries in the primary molar.

C.L. Patchett, V. Srinivasan & P. J. Waterhouse.

1Department of Child Dental Health, Newcastle Dental Hospital, Newcastle upon Tyne. NE2 4AZ, UK.
2School of Dental Sciences, University of Newcastle upon Tyne. NE2 4BW, UK.

Correspondence to: Miss Claire L Patchett, Specialist Registrar, Department of Child Dental Health, Newcastle Dental Hospital, Richardson Road, Newcastle upon Tyne. NE2 4AZ. E-mail c.l.patchett@ncl.ac.uk.

Running headline: Development of a pulp therapy protocol.
Key words: Pulpotomy, primary molar, formaldehyde, formocresol, pulpotomy medicaments
Summary

Aim. To produce a clinical protocol for pulp therapy techniques in the extensively carious primary molar.

Introduction. The International Agency for Research on Cancer (IARC) has recently classified formaldehyde as carcinogenic to humans. As such, a medicament that can be used to replace formocresol in clinical practice should be identified.

Method. Part I of this paper explored the currently available alternative interventions and materials to formocresol in the form of a narrative review following an extensive literature search. Part II now presents the formation of a specialist group to establish an evidence-based protocol, for the management of the extensively carious primary molar.

Conclusion. A protocol and key points document have been developed to assist clinicians in their treatment planning. Areas for further post-graduate training have been identified.

Aim

To produce a working clinical protocol for pulp therapy techniques in the extensively carious primary molar.
Introduction

Buckley’s Formocresol was first introduced as a pulp medicament in 1904 [1] and since 1930 [2] has been the treatment of choice for primary molar vital pulpotomies. There is much published work relating to its clinical use with clinical success ranging from 55% to 98%. [3, 4, 5, 6, 7, 8] Several studies in the 1970’s demonstrated that a one-fifth dilution of formocresol was as effective as a full strength solution in terms of initial cytotoxicity to fibroblasts [9, 10, 11, 12]. Concern over the use of formaldehyde has been voiced for some time [13 (cited in [17]), 14, 15, 16, 17] but until recently the evidence has been equivocal.

Animal studies

Formaldehyde has been shown to be mutagenic in *Escherichia coli* bacteria [18,19] and the fruit fly Drosophila [20]. When administered in drinking water, formaldehyde produced an increase in total malignant tumours in rats [21] and when inhaled has been shown to induce squamous cell carcinoma of the nasal cavity [22]. Long-term studies using rabbits have demonstrated that prolonged contact with formaldehyde may produce precancerous and cancerous states in the epithelium [23]. Other authors have suggested caution in extrapolating the findings of animal studies to humans. In particular the rat has been shown to be more susceptible to changes induced by inhaled formaldehyde [24].
Mammalian cell *in vitro* studies have demonstrated unscheduled DNA synthesis in HeLa cells as a result of formaldehyde application [25] and increased cell proliferation in respiratory mucosa [22]. Forward mutations have also been produced by formaldehyde in a human lymphoblastoid cell line [26]. Experimental evidence suggests that inhaled formaldehyde vapour can exert toxic effects at remote sites as well as in the respiratory tract. Chromosomal aberrations [27, 28], increased micronuclei [27, 29, 30], DNA-protein cross-links [31, 32] and sister chromatid exchanges [27, 32, 33, 34] have been found in peripheral lymphocytes of humans exposed to formaldehyde. Although there is an established link between chromosomal aberrations and cancer [35], the relationships between micronuclei or sister chromatid exchanges and health risks are less clear [36].

Human cohort studies

Long-term cohort studies of industrial workers have found increased risks for leukaemia, particularly myeloid leukaemia, in medical workers and other professionals exposed to formaldehyde [37, 38] whilst other research does not support these findings [39]. Possible associations have also been suggested between occupational formaldehyde and cancer of the lung [39, 40], nasopharynx [39, 41], stomach [39], paranasal sinuses [42, 43], prostate [41, 44], brain [44] and pancreas [45]. However, these associations remain inconsistent.
Dental studies

Systemic distribution of radio-isotope labelled formaldehyde has been demonstrated following formocresol pulpotomy in dogs [46] and Rhesus monkeys [47]. Labelled formaldehyde has been found in periodontal ligament, bone, dentine and urine and smaller amounts in liver, kidney, lungs, skeletal muscle and cerebro-spinal fluid within minutes of the pulpotomy [46]. More recently a human case control study demonstrated a single case of mutagenicity in peripheral blood lymphocyte cultures following formocresol pulpotomy [48]. A correlation between formocresol pulpotomies in primary teeth and enamel defects in the permanent successor has been suggested [49] although other workers found no such links [50].

In June 2004, the IARC classified formaldehyde as carcinogenic to humans [51]. The expert working group determined that there is now sufficient evidence that formaldehyde causes nasopharyngeal cancer in humans, limited evidence for cancer of the nasal cavity and paranasal sinuses and strong but not sufficient evidence for a causal association between leukaemia and occupational exposure to formaldehyde. The IARC working group recommended further research in order to identify a mechanism for the induction of leukaemia and to build on the existing evidence base.

Care pathways, clinical protocols and decision trees

The National Pathway Association was founded in 1994 to support the development of integrated care pathways. A care pathway determines locally agreed, multidisciplinary practice based on guidelines and evidence where available, for a
specific patient group. It forms all, or part of, the clinical record, documents the care given and facilitates the evaluation of outcomes for continuous quality improvement [52].

A clinical protocol is a written framework for the expected management path and outcome for a patient undergoing a particular procedure. Clinical protocols and care pathways are being widely implemented in the National Health Service (NHS), and although initially concerns were expressed regarding the lack of evidence for their efficacy [53, 54], recent work has helped to address this issue. It would appear that both are capable of improving quality of care and patient satisfaction [55]. The aim of a clinical protocol is to improve the quality of care and ensure that treatment is based on the latest evidence and research. They should complement rather than abolish intuitive thought based on clinical expertise. Education and training strategies are essential to support understanding, ownership and acceptance [56].

Decision analysis is the application of structured, quantitative methods to analyse decisions under conditions of uncertainty [57]. They can be shown graphically as decision trees and help to structure problems and highlight areas for further research. Decision analysis works on the principle that the degree of uncertainty decreases when the medical literature includes directly relevant, valid evidence [58].
Methods

Protocol development

On 15th June 2004 the IARC issued a press release classifying formaldehyde as carcinogenic to humans [51]. This information was circulated to all Consultants in Paediatric Dentistry and resulted in the withdrawal of Buckley’s formocresol and all paraformaldehyde containing devitalising pastes from the majority of Teaching Hospitals. In the Department of Child Dental Health, Newcastle upon Tyne a specialist group of paediatric dentists, comprising consultants, specialist registrars, university academics and a staff grade, was formed in order to establish a consensus decision on the management of extensively carious primary molar teeth.

A traditional narrative literature review was completed [Part I of this publication] and primary research papers for each of the possible alternatives to formocresol were identified. Where possible randomised control trials were chosen to evaluate clinical and radiographic success for each medicament [59, 60, 61, 62, 63, 64, 65]. Histological animal studies were identified to enable comparison between the cytological and toxicological effects of different medicaments and techniques [66, 67]. Each clinician in the specialist group was asked to critically appraise their allocated papers and to present their findings at a ‘brainstorming’ session.

Following appraisal of the selected publications, the group discussed the ideal properties of a pulp therapy agent and tabulated the key findings of the review [Table 1]. It was felt that in light of the recent IARC findings, it was necessary to implement
the chosen alternatives as soon as possible, whilst also considering techniques that may be possible in the future.

For inclusion in the protocol it was necessary for a technique or medicament to have a sufficient evidence base, ideally human trials, for clinical efficacy and to be economical in order to justify its routine use within an NHS teaching hospital. There should also be little immediate financial outlay or training implications to allow rapid introduction of the protocol.

On this basis, ferric sulphate (Astringedent, Ultradent Products Inc) was chosen for use in the vital primary molar pulpotomy. Although concerns were expressed that this agent may mask underlying pulp pathosis, it was felt that it was clinically successful, operator and patient friendly and a financially viable medicament. MTA (Pro Root, Dentsply, Tulsa Dental) will also be an option for staff-performed pulpotomies and perhaps introduced into the undergraduate arena in the future.

A working draft of the protocol was produced and circulated to enter into the ‘iterative’ process of review. The draft protocol consisted of a flow chart to assist clinicians in their treatment planning combined with a key points document to offer further information and to standardise data for future research and audit. Each draft version was then circulated for comment a further three times. This resulted in the working protocol [Figure 1]. To facilitate future audit of the protocol, every time pulp therapy is performed within the Department, a stamp will be used to record standardised information in the patient’s notes, for example the time taken to achieve
haemostasis and the number of applications of ferric sulphate required. The information will also be recorded in a ‘pulp therapy book’.

Implementation of the protocol

Undergraduate dental students were informed of changes in protocol via information uploaded within the University Virtual Learning Environment. In addition, a lecture was given to all third year students, prior to their initial clinical sessions within paediatric dentistry and an existing seminar was revised to include an update on pulp therapy in the primary dentition. The same information was supplied to all teachers of paediatric dentistry within the School and in Outreach clinics. It is expected that further modifications to the teaching programme will be made as pulp therapy techniques are developed and audited.

The working protocol and key points document were circulated to all staff working within the Department. Discussion of these documents was incorporated into the junior staff induction programme. Nursing staff were also informed of the new techniques and proposed local protocol via the senior nurse. Areas for future staff training were identified at the team meeting and hands-on training for specialist staff has been arranged for the near future.

Discussion

Following the recent IARC press release [51], the use of formocresol in paediatric dentistry is no longer recommended and clinicians must adopt alternative evidence
based procedures. The authors acknowledge that the evidence for some of the alternatives to formocresol is weak. However, the IARC statement demands a change to current practice and an urgent review of the alternatives in order to develop an interim protocol. It is hoped that this protocol will add to the debate and enable the collection of standardised data which will, in turn lead to a more evidence-based guideline in the future.

The importance of careful patient and tooth selection when considering provision of a pulp therapy cannot be over-emphasised. In order for vital pulp therapy to be successful, the patient must be sufficiently compliant to allow adequate moisture control, ideally with rubber dam placement, and the tooth must be radiographically free of pathology and restorable with a bonded restoration or pre-formed metal crown in order to provide an effective seal.

Despite careful initial assessment, diagnosis of pulpal status may be difficult. For example, once an irreversibly inflamed coronal pulp has been amputated, the health of the radicular pulp is assessed on an empirical basis i.e. how readily the pulp stump bleeds. As yet we have no scientific clinical method of determining pulpal status prior to treatment, although there has been some work to investigate correlations between the presence of certain inflammatory mediators and clinical outcome [68, 69].

Presently, in Newcastle the treatment of choice for non-vital primary molars may be extraction as there is little evidence of an alternative medicament which is as effective as formocresol and which exhibits minimal technique sensitivity. Pulpectomy
remains an option for the future but staff training will be required before the technique can be introduced in the clinical setting and taught at undergraduate level. The management of the partially-vital primary molar merits further research and discussion, as the evidence is scant for the use of Ledermix™ (Blackwell Supplies Ltd) in such teeth.

In order to justify its use within an NHS teaching hospital, a medicament must be effective from a clinical and economical perspective. MTA has been previously excluded in some centres on the basis of its expense but research would suggest that MTA does have a role to play in the treatment of carefully selected primary molar vital pulpotomies and that its cost is comparable to that of ferric sulphate.

Ferric sulphate appears to be as effective in vital pulpotomies as formocresol and to date there is no evidence to suggest any adverse effects of this medicament. As such, within our protocol it was chosen as the treatment of choice for vital pulpotomies. Further research and audit is required to build on the existing evidence base for ferric sulphate, in particular the authors would welcome more long-term randomised clinical trials.

It has been suggested that the careful monitoring of primary teeth with extensive caries is a reasonable treatment option when combined with a thorough preventive regimen [70,71]. The authors suggest that monitoring may be appropriate, but only for patients who are unable to accept operative treatment and where the tooth is asymptomatic and clinically and radiographically free of pathology. It is advisable that this decision is made with the consent of a fully informed parent due to the
potential risk of damage to the permanent successor. Monitoring is not an option for patients to whom infection poses a significant risk, for example those with leukaemia or congenital heart defects.

Radiographic review

Regular radiographic monitoring of treated teeth is advocated to assist in the assessment of primary molar and permanent successor teeth. A radiograph taken post treatment would enable detection of recurrent caries, a failing coronal restoration, periapical or furcal radiolucencies, internal or external root resorption, failure of eruption of the permanent successor tooth along its expected path and pathosis, with or without concomitant clinical symptoms which may damage or deflect the permanent tooth germ [50].

Although the literature relating to the frequency of radiographing pulpotomised teeth is scant, the Faculty of General Dental Practitioners [72] clearly outlines selection criteria for radiographic screening according to caries risk status. These guidelines suggest that bitewing radiographs should be taken on a six-monthly basis for children identified as high-caries risk and on an annual basis for those classified as moderate risk. The authors would suggest that a vertical bitewing radiograph could be taken as part of this radiographic review and would enable post pulp-therapy review without an increase in radiation dose.
Conclusion

Following review of the current literature, a working clinical protocol for pulp therapy techniques in the extensively carious primary molar has been developed. This protocol has been implemented at undergraduate and postgraduate level and has helped to identify areas where further staff training is required. It is expected that the clinical protocol will evolve as further evidence comes to light.

Acknowledgements

The authors would like to thank the following for their significant contributions to the development of the protocol: Dr Andrew Shaw, Mr Ben Cole, Dr Anne Maguire, Dr Loraine Lowry, Mrs Virginia Hind and Mrs Solape Adeboye.
<table>
<thead>
<tr>
<th>Material</th>
<th>Clinical success (Example cited)</th>
<th>Human clinical studies?</th>
<th>Tested against formocresol?</th>
<th>Operator ease of use</th>
<th>Patient acceptability</th>
<th>Cost of technique</th>
<th>Effect upon pulp cell</th>
</tr>
</thead>
<tbody>
<tr>
<td>Glutaraldehyde</td>
<td>82% @ 25 months Fuks et al. 1986</td>
<td>✓</td>
<td>✓</td>
<td>++ +</td>
<td>++ +</td>
<td>+</td>
<td>Devitalisation</td>
</tr>
<tr>
<td>Electrosurgery</td>
<td>99.4% @ 70 months Mack and Dean 1993</td>
<td>X</td>
<td>X</td>
<td>+</td>
<td>+</td>
<td>+</td>
<td>Devitalisation</td>
</tr>
<tr>
<td>Ferric sulphate</td>
<td>92% @ 4 years Ibrcovic et al. 2003</td>
<td>✓</td>
<td>✓</td>
<td>++ +</td>
<td>++ +</td>
<td>+</td>
<td>Preservation</td>
</tr>
<tr>
<td>Calcium hydroxide</td>
<td>77.1% @ 22.5 months Waterhouse 2000</td>
<td>✓</td>
<td>✓</td>
<td>++ +</td>
<td>++ +</td>
<td>+</td>
<td>Preservation</td>
</tr>
<tr>
<td>MTA</td>
<td>100% @ 1 year (grey) Agamy et al 2004</td>
<td>✓</td>
<td>X</td>
<td>+</td>
<td>+</td>
<td>+</td>
<td>Preservation</td>
</tr>
<tr>
<td>Lasers</td>
<td>100% @ 90 days Elliot et al 1999</td>
<td>✓</td>
<td>✓</td>
<td>+</td>
<td>+</td>
<td>+</td>
<td>Preservation</td>
</tr>
<tr>
<td>IPT</td>
<td>95% @ 2–72 weeks Al Zayer et al 2003</td>
<td>✓</td>
<td>✓</td>
<td>++ +</td>
<td>++ +</td>
<td>+</td>
<td>Remineralisation</td>
</tr>
<tr>
<td>BMP</td>
<td>No studies</td>
<td>X</td>
<td>X</td>
<td>Unknown</td>
<td>Unknown</td>
<td>Unknown</td>
<td>Remineralisation</td>
</tr>
<tr>
<td>Collagen</td>
<td>No studies</td>
<td>X</td>
<td>X</td>
<td>Unknown</td>
<td>Unknown</td>
<td>Unknown</td>
<td>Remineralisation</td>
</tr>
<tr>
<td>Pulpectomy</td>
<td>91% @ 36 months Casas and Kenny 2000</td>
<td>✓</td>
<td>✓</td>
<td>+</td>
<td>+</td>
<td>+</td>
<td>Extirpation</td>
</tr>
<tr>
<td>Ledermix</td>
<td>79% @ 42 months Hansen et al 1971</td>
<td>✓</td>
<td>X</td>
<td>++ +</td>
<td>++ +</td>
<td>+</td>
<td>Preservation</td>
</tr>
</tbody>
</table>

Notes:
- + Poor
- + + Fair
- + + Good
- + Low
- + + Medium
- + + High
Is tooth restorable and without signs of peri-radicular pathology?

Y \rightarrow Extract

N \rightarrow Is tooth still restorable?

N \rightarrow Is tooth r estorable and without signs of peri-radicular pathology?

Y \rightarrow Consent patient and warn carer that extraction may be required at a later date. Ensure pre-operative periapical radiograph < 1/52 old available.

Y \rightarrow Topical, LA and then caries removal until ADJ/peripheries clear, all soft caries removed and stained dentine left on cavity floor. Is tooth still restorable?

N \rightarrow Has there been a pulpal exposure?

Y \rightarrow Unroof pulp chamber, ensure complete coronal amputation, irrigate with saline and apply pressure to pulp stumps with sterile cotton wool pledget. Note whether haemostasis achieved within 2-3 mins.

Y \rightarrow Apply 15% ferric sulphate for 15 sec. Has haemostasis been achieved?

N \rightarrow Reapply ferric sulphate for further 15 sec. Has haemostasis been achieved?

N \rightarrow Consider removal of further pulp tissue using hand instruments then reapply ferric sulphate for 15 sec. Has haemostasis been achieved?

Y \rightarrow Will the patient tolerate further treatment this visit?

Y \rightarrow Consider extraction (LA/RA/GA) or pulpectomy based on patient cooperation.

N \rightarrow Indirect Pulp Therapy (GIC lining over dentine)+ PFMC / Bonded restoration

Y \rightarrow Dress with Ledermix™ and restore temporarily with GIC. Review patient in 1/52.

Y \rightarrow Review with radiograph in 4-6/12. Consider discharge to GDP and suggest annual radiograph.

Y \rightarrow Place Ledermix™ and GIC and review < 1 month.

N \rightarrow Is patient suitable for pulpotomy?

(Consider MH, no. of carious teeth, compliance, and parental support / preference)

N \rightarrow Consider monitoring if tooth is asymptomatic and clinically and radiographically free of pathology. This must be in conjunction with a thorough preventive regimen.

N \rightarrow Has the tooth sensitive to instrumentation?

Y \rightarrow Is the tooth sensitive to instrumentation?

N \rightarrow Unroof pulp chamber, ensure complete coronal amputation, irrigate with saline and apply pressure to pulp stumps with sterile cotton wool pledget. Note whether haemostasis achieved within 2-3 mins.

Y \rightarrow Apply 15% ferric sulphate for 15 sec. Has haemostasis been achieved?

N \rightarrow Reapply ferric sulphate for further 15 sec. Has haemostasis been achieved?

N \rightarrow Consider removal of further pulp tissue using hand instruments then reapply ferric sulphate for 15 sec. Has haemostasis been achieved?

N \rightarrow Will the patient tolerate further treatment this visit?

Y \rightarrow Consider extraction (LA/RA/GA) or pulpectomy based on patient cooperation.
LEGENDS

Figure 1

<table>
<thead>
<tr>
<th>Abbreviation</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>MH</td>
<td>Medical history</td>
</tr>
<tr>
<td>RA</td>
<td>Relative analgesia</td>
</tr>
<tr>
<td>ADJ</td>
<td>Amelo-dentinal junction</td>
</tr>
<tr>
<td>ZnOE</td>
<td>Zinc oxide eugenol cement</td>
</tr>
<tr>
<td>GDP</td>
<td>General dental practitioner</td>
</tr>
<tr>
<td>LA</td>
<td>Local anaesthesia</td>
</tr>
<tr>
<td>GA</td>
<td>General anaesthesia</td>
</tr>
<tr>
<td>GIC</td>
<td>Glass ionomer cement</td>
</tr>
<tr>
<td>PFMC</td>
<td>Pre-formed metal crown</td>
</tr>
</tbody>
</table>

Table 1

<table>
<thead>
<tr>
<th>Abbreviation</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>MTA</td>
<td>Mineral trioxide aggregate</td>
</tr>
<tr>
<td>IPT</td>
<td>Indirect pulp therapy</td>
</tr>
<tr>
<td>BMP</td>
<td>Bone morphogenic protein</td>
</tr>
</tbody>
</table>
References

42. Blair A et al. Mortality among industrial workers exposed to formaldehyde. *Journal of the National Cancer Institute* 1986; **76**: 1071-1084.

58. Richardson WS. Users; Guides to the Medical Literature. VII. How to use a clinical decision analysis. A. Are the results of the study valid? Journal of the American Medical Association 1995; 273: 1292-1295.

