Abstract: This study documented temporal variation in the abundance of butterflyfishes at Trunk Reef, on the central Great Barrier Reef, Australia, from May 2000 to March 2005. During this period, live coral cover declined by >90%, mostly due to severe coral bleaching. There were no short-term changes (within 4 months) in the abundance of butterflyfishes following initial declines in live coral cover. However, surveys conducted in 2005 revealed significant declines in the abundance of Chaetodon baronessa, C. lunulatus, C. trifascialis, C. plebeius and C. rainfordi, all of which are obligate hard-coral feeders. In contrast, there was no significant change in the abundance of C. auriga, C. aureofasciatus, C. citrinellus, C. melannotus, or C. vagabundus, which are much less reliant on scleractinian coral for food. Clearly, extensive coral depletion, such as that caused by severe coral bleaching, can have a major effect on the abundance of butterflyfishes. Specific responses of butterflyfishes varied according to their reliance on hard corals for food and their ability to utilise alternate prey types.
Declines in the abundance of *Chaetodon* butterflyfishes (Chaetodontidae) following extensive coral depletion.

M.S. Pratchett*†, S.K. Wilson‡§ and A.H. Baird*

*ARC Centre of Excellence for Coral Reef Studies, James Cook University, Townsville, Q4811, AUSTRALIA.
‡School of Marine Science and Technology, University of Newcastle upon Tyne, Newcastle upon Tyne, NE1 7RU, UK.

Running headline: Butterflyfish responses to coral depletion

† Author to whom correspondence should be addressed. Tel.: +61 7 47815747; Fax: +61 7 47251570; email: morgan.pratchett@jcu.edu.au

§ Current address: Australian Institute of Marine Science, TMC, Townsville, Queensland 4810, Australia.
This study documented temporal variation in the abundance of butterflyfishes at Trunk Reef, on the central Great Barrier Reef, Australia, from May 2000 to March 2005. During this period, live coral cover declined by >90%, mostly due to severe coral bleaching. There were no short-term changes (within 4 months) in the abundance of butterflyfishes following initial declines in live coral cover. However, surveys conducted in 2005 revealed significant declines in the abundance of Chaetodon baronessa, C. lunulatus, C. trifascialis, C. plebeius and C. rainfordi, all of which are obligate hard-coral feeders. In contrast, there was no significant change in the abundance of C. auriga, C. aureofasciatus, C. citrinellus, C. melannotus, or C. vagabundus, which are much less reliant on scleractinian coral for food. Clearly, extensive coral depletion, such as that caused by severe coral bleaching, can have a major effect on the abundance of butterflyfishes. Specific responses of butterflyfishes varied according to their reliance on hard corals for food and their ability to utilise alternate prey types.

Key words: Acanthaster planci, Bleaching, Coral Reef Fishes, Disturbance, Dietary specialisation, Resource depletion.
The loss of habitat via both natural and anthropogenic disturbances plays a major role in structuring coral reef communities. Sessile benthic communities on tropical coral reefs are subject to frequent and often catastrophic disturbances, such as severe tropical storms, freshwater plumes, unseasonal temperature extremes, and infestations of the coral eating crown-of-thorns starfish *Acanthaster planci* L. (Brown, 1997; Hughes & Connell, 1999). These acute, but increasingly frequent disturbances, are compounding upon chronic effects of more direct anthropogenic influences (overfishing, pollution, and coastal development) causing marked reductions in the abundances of sessile invertebrates, especially scleractinian (“hard”) corals (e.g., Connell, 1997, Ostrander *et al.*, 2000; Hughes *et al.*, 2003; Bellwood *et al.*, 2004).

More than 30% of coral reefs throughout the world are already severely degraded and corals on 60% may be lost by 2030 (Hughes *et al.*, 2003). Changes in the physical and biological structure of benthic reef habitats are likely to have further, often detrimental, effects on other reef associated organisms, particularly coral reef fishes. Several studies have documented significant declines in the abundance of fishes, and even localised extinctions, following extensive depletion of hard coral, especially among those species which rely on coral for food or shelter (e.g., Sano *et al.*, 1987; Lewis, 1997; Jones & Syms, 1998; Kokita & Nakazono 2001; Booth & Berretta 2002; Munday, 2004).

Among those fishes with the greatest reliance on hard corals are butterflyfishes from the genus *Chaetodon* (family Chaetodontidae), many of which feed on hard corals (Anderson *et al.*, 1981; Harmelin-Vivien & Bouchon-Navaro, 1983; Pratchett,
Spatial variation in the abundance of butterflyfishes is often strongly correlated with hard coral cover (Öhman et al., 1998; Cadoret et al., 1999; Bozec et al., 2005), indicating a close association between butterflyfishes and coral prey. This is further reinforced by studies (e.g., Lewis, 1997; Bouchon-Navaro et al., 1985; Williams, 1986; Halford et al., 2004) showing temporal changes in the abundance of butterflyfishes following significant increases or decreases in hard coral cover. Moreover, butterflyfishes have been promoted as indicators of reef health (Hourigan et al., 1988; Crosby and Reese, 2005), whereby declines in the abundance of butterflyfishes may provide an early warning of stresses to reef corals and overall habitat degradation. However, specific responses of butterflyfishes to changes in hard coral cover vary greatly among species and also among studies (Bouchon-Navaro et al., 1985; Williams, 1986). Different butterflyfishes vary in the extent to which they are reliant on hard corals due inter-specific differences in their broad dietary habitats (Pratchett 2005). While most butterflyfishes feed on scleractinian corals, the proportional consumption of scleractinian corals (versus soft-corals, gorgonians or other benthic prey items) varies among species, ranging from 100% for obligate hard-coral feeders down to 0% for some motile invertebrate feeders (Pratchett, 2005). Even among obligate hard-coral feeders, the extent to which coral cover (versus recruitment rates or availability of other resources) limits population size may vary in time and space (Cox, 1994).

Among coral-feeding butterflyfishes there are also marked differences in the range of different corals eaten as well as the proportional consumption of different corals (Cox, 1994; Pratchett, 2005). For example, Chaetodon trifascialis Quoy and Gaimard 1825 is an extreme specialist, which feeds almost exclusively Acropora.
Hyacinthus Dana 1846 (Pratchett, 2005). *Chaetodon lunulatus* Quoy and Gaimard 1825 meanwhile, feeds on a wide diversity (up to 52 species) of different corals (Berumen *et al.*, 2005; Pratchett, 2005). This variability in the dietary habitats of coral-feeding butterflyfishes is likely to influence their reliance on particular corals, as well as their responses to different types of disturbances. For highly specialised species the availability of specific prey would be critical to their survivorship, and may ultimately limit their abundance. In contrast, the distribution and abundance of more generalist species would be less constrained by prey availability. As such, generalist species may be much more resilient to changes in cover and composition of hard corals (e.g., Pratchett *et al.*, 2004), whereas effects of disturbances on specialist species will vary according to the particular coral species on which they specialise. Notably, different corals vary in their susceptibility to specific disturbances (Marshall & Baird, 2000; Baird & Marshall 2002), such that different disturbances (e.g., coral bleaching versus outbreaks of *A. planci*) may vary in their effects on highly specialised butterflyfishes.

The purpose of this study was to explore changes in the abundance of butterflyfishes following extensive coral depletion on the Great Barrier Reef (GBR), Australia, caused by severe coral bleaching. This study follows-on from a previous study (Pratchett *et al.*, 2004), which reported no decline in the abundance of the obligate coral-feeding butterflyfish, *C. lunulatus*, within 4 months after significant declines in live coral cover at Trunk Reef, in the central GBR. There was however, a noticeable decline in the physiological condition of *C. lunulatus* from before and immediately after the bleaching event, which may have led to subsequent reductions in survivorship (Pratchett *et al.*, 2004). Consequently, further surveys of butterflyfish
assemblages were conducted at Trunk Reef several years after the bleaching event, testing for long-term changes in abundance. This study examined changes in the abundance of *Chaetodon* butterflyfishes over 5 years, from 18 months before the bleaching event to 3 years post-bleaching. Variation in the abundance of individual species was examined in light of their specific feeding preferences, following Pratchett (2005). Previous studies (Bouchon-Navaro *et al.*, 1985; Williams, 1986; Sano *et al.*, 1987) identified a significant link between the broad dietary habits of butterflyfishes and their susceptibility to coral depletion, whereby obligate coral-feeders are more likely to decline in abundance following major habitat perturbations, compared to facultative or non-coral feeders. However, inter-specific differences in the specific feeding preferences and dietary specialisations of *Chaetodon* butterflyfishes have only recently been documented (Pratchett, 2005), and may account for significant variation in the effects of coral depletion on different butterflyfish species.

METHODS

This study was conducted at Trunk Reef (18°17’S, 146°53’E), in the central section of the Great Barrier Reef (GBR), Australia. Trunk reef is a large (ca. 125km²) submerged reef, located ~120km north of Townsville. This reef, like many throughout GBR, was subject to extensive and wide-spread coral bleaching during the summer (November – March) of 2001-02 (Pratchett *et al.*, 2004). For this study, local assemblages of both scleractinian corals and butterflyfishes were examined in May 2000 (18 months before the bleaching), in March 2002 (towards the end of the bleaching event), and in March 2005 (3 years after the bleaching). Sampling was
conducted on the shallow reef crest (2-3m water depth), at three randomly selected sites along the exposed (south-east) side of Trunk Reef. All sites were non-overlapping and independent, but were very similar in their physical structure, aspect, and exposure to prevailing south-east trade winds.

Live cover and generic composition of scleractinian corals was quantified using replicate 10-m line-intercept transects at each site. Transects were delineated using fibreglass tapes laid parallel to the reef crest and positioned a few metres apart. Ten replicate transects were sampled at each of three different sites in May 2000, March 2002 and March 2005, giving a total of 90 transects. On each transect, every colony lying directly beneath the transect tape was identified to genus and it’s intercept length measured to the nearest centimetre. Variation in total live cover of scleractinian coral was analysed using a two-factor nested ANOVA (sites nested within sampling occasions) based on arcsine transformed estimates of total coral cover from each transect.

Densities of butterflyfishes on the reef crest at Trunk reef were quantified using visual surveys conducted along 50-m transects. All adult butterflyfishes observed within 2-m either side of transect line were counted and recorded to species. All transects were positioned within 10-m of the edge of the reef crest, following the natural contours of the reef. Five replicate transects were conducted at each of three sites in May 2000, March 2002 and March 2005, giving a total of 45 transects. A total of 15 species of butterflyfishes were recorded across all 45 transects, but five of these species (*Chaetodon ephippium* Cuvier 1831, *Chaetodon lineolatus* Cuvier 1831, *Chaetodon lunula* Lacepede 1802, *Chaetodon rafflesii* Bennett 1830, and *Chaetodon*
unimaculatus Bloch 1787) were recorded on only 1-2 different transects and were thus excluded from subsequent analyses. The remaining 10 species (C. lunulatus, Chaetodon auriga Forsskål 1775, Chaetodon aureofasciatus Macleay 1878, Chaetodon baronessa Cuvier 1829, Chaetodon citrinellus Cuvier 1831, Chaetodon melannotus Bloch & Schneider 1801, Chaetodon plebeius Cuvier 1831, Chaetodon rainfordi McCulloch 1923, C. trifascialis, and Chaetodon vagabundus Linnaeus 1758) included representatives from three different trophic categories; i) obligate hard-coral feeders (C. aureofasciatus, C. baronessa, C. lunulatus, C. plebeius, C. rainfordi, and C. trifascialis), which feed almost exclusively on scleractinian corals, ii) facultative coral feeders (C. citrinellus, and C. melannotus), which feed largely on scleractinian corals but supplement their diets with alcyonaceans or other benthic prey, and iii) non-coral feeders (C. auriga and C. vagabundus), which rarely consume scleractinian corals but feed mostly on motile benthic invertebrates, following Pratchett (2005).

Temporal variation in the abundance of butterflyfishes was analysed using a two-factor nested ANOVA (sites nested within sampling occasions). Separate analyses were conducted for each of the 10 most abundant species, to explore individual responses to severe coral depletion. To account for inflated type-I error rates arising from running multiple tests on non-independent data, Bonferroni corrected alpha levels were used to assess the significance of ANOVA results, following Sokal & Rohlf (1987). Raw data was log-10 transformed prior to analyses to improve homogeneity of variances, and Tukey’s post-hoc test was used to compare changes in abundance of each species over the two consecutive time periods (May 2000 - March 2002 and March 2002 - March 2005).
RESULTS

Live coral cover declined by >90% on the reef crest at Trunk Reef during this study, from 33.4% (± 1.3SE) in May 2000, down to just 3.2% (± 0.8SE) in March 2005. Observed declines in total cover of scleractinian (all species pooled) were highly significant (ANOVA, df = 2/6, p < 0.001), and very consistent among sites (ANOVA, df = 6/81, p > 0.05). A significant proportion of observed coral mortality occurred between May 2000 and March 2002 (Fig. 1), associated with extensive coral bleaching in late 2001 (Pratchett et al., 2004). During this time, there were significant declines in live cover of Acropora, Porites and Montipora, but relatively little change in any other coral taxa (Fig. 2). However, many of the coral colonies surveyed in March 2002 (including Acropora, Porites, Goniastrea, Stylophora and Isopora) though still alive, did exhibit conspicuous signs of coral bleaching.

Between March 2002 and March 2005, live coral cover declined by a further 78%, from 15.0% (± 1.4SE) coral cover in March 2002 down to 3.2% (± 0.8SE) in March 2005. Marked declines in live cover were seen across virtually all coral genera, except Pocillopora (Fig. 2). Several genera (Montipora, Favia, Seriatopora and Isopora) completely disappeared from the reef crest at Trunk Reef by March 2005, while several others (Porites, Goniastrea and Stylophora) persisted only as small remnants of previously, much larger coral colonies. Consequently, the coral assemblage on the reef crest at Trunk Reef underwent a significant shift during the study, from an assemblage with high generic richness (20 different genera) dominated by Acropora and Porites, to an assemblage with relatively low generic richness (only
9 genera) and only Acropora and Pocillopora represented in reasonable abundance. There was not however, any noticeably decline in topographical complexity, as dead corals remained intact in March 2005.

Despite significant declines in live coral cover between May 2000 and March 2002, there was little corresponding decline in the abundance of butterflyfishes on the reef crest at Trunk Reef (Fig. 1). Mean densities of butterflyfishes recorded in May 2000 were 19.46 (± 1.24SE) fishes per 200m² (per transect), and were only slightly lower (17.93 ± 0.66 SE fishes per 200m²) in March 2002. Moreover, there was little change in the individual abundance of any of the 10 most abundant species over this period (Table 1). In contrast, mean densities of butterflyfishes declined by 73% between March 2002 and March 2005, down to 4.86 (± 1.24SE) fishes per 200m² in March 2005 (Fig. 1). Overall declines in the abundance of butterflyfishes were highly significant (ANOVA, df = 2/6, p < 0.01), and consistent across replicate sites (ANOVA, df = 6/34, p > 0.05). Significant declines in the abundance of butterflyfishes were driven mainly by marked reductions in the abundance of C. lunulatus and C. baronessa, while C. trifascialis, C. plebeius, and C. rainfordi had disappeared entirely by March 2005 (Fig. 3). Mean densities of C. lunulatus, which was the dominant butterflyfish recorded at Trunk Reef in May 2000 and March 2002, declined by 97%, from 7.27 (± 0.80SE) fishes per 200m² in March 2002, to just 0.20 (± 0.11SE) fishes per 200m² in March 2002.

Species of butterflyfishes which exhibited significant declines in abundance at Trunk Reef (C. baronessa, C. lunulatus, C. plebeius, C. rainfordi and C. trifascialis)
were all obligate hard-coral feeders. Each of these species exhibited significant
dclines in abundance, which were apparent across all sites (Table I). Meanwhile,
there was no significant change in the abundance of facultative coral feeders (*C.
citrinellus* or *C. melannotus*) or non-coral feeders (*C. auriga* and *C. vagabundus*)
during the study (Table I). There was a noticeable decline in the abundance of *C.
* melannotus* between March 2002 and March 2005 (Fig. 3), but ANOVA and Tukey’s
post hoc tests revealed that this was not significant. Similarly, mean densities of *C.
aureofasciatus* declined from 0.73 (± 0.30SE) individuals per 200m² in May 2000,
down to 0.33 (± 0.23SE) in March 2002, but this change in abundance was not
statistically significant (Table I).

DISCUSSION

Climate induced coral bleaching represents one of the most significant and
increasingly prevalent sources of coral mortality (Hoegh-Guldberg, 1999). In 2001-02,
coral bleaching caused widespread and very extensive mortality of scleractinian corals
throughout the Great Barrier Reef (Berkelmans *et al.*, 2004) and was the primary
factor responsible for declines in hard coral cover at Trunk Reef between May 2000
and March 2002 (Pratchett *et al.*, 2004). Coral bleaching may also have been
responsible for subsequent declines in hard coral cover after March 2002; many of the
corals surveyed in March 2002 were very pale in colour and may have later died as a
showed that coral mortality may occur up to 40 weeks after initial signs of bleaching.
However, additional coral mortality may also have resulted from infestations of *A.
planci* at Trunk Reef in 2003-2004 (Sweatman *et al.*, 2004).
Declines in live cover of different coral genera at Trunk Reef mostly correspond with differences in bleaching susceptibilities of corals, reported by Marshall and Baird (2000). All corals are susceptible to bleaching at some level, but certain taxa, such as *Acropora*, *Isopora*, *Seriatopora*, *Stylophora*, and *Pocillopora* are much more prone to bleaching (Marshall & Baird, 2000), and die very quickly once bleached (Baird & Marshall, 2002). At Trunk Reef in 2001-02 bleaching of hard coral was very severe; nearly all corals exhibited conspicuous signs of bleaching, including some genera (e.g. *Porites*) often resilient to bleaching, and it appears likely that most of these colonies subsequently died. One notable exception was the genus *Pocillopora*. Despite being highly susceptible to coral bleaching, live cover of *Pocillopora* declined very little between May 2000 and March 2002, and showed no change between March 2002 and March 2005 (cf. *Seriatopora* and *Stylophora*). This may suggest that coral mortality recorded between March 2002 and March 2005 is primarily attributable to feeding activities of *A. planci* (cf. delayed affects of coral bleaching) because *Pocillopora* spp. are mostly immune to attack from *A. planci*, due to symbionts (specifically, *Alpheus* shrimps and *Trapezia* crabs) which defend the coral (Glynn, 1974; Pratchett, 2001).

Corresponding with marked declines in coral cover, this study revealed significant declines in the abundance of several *Chaetodon* butterflyfishes, which are almost certainly related to coral depletion. While this study did not control for the effects of coral depletion, butterflyfishes are reasonably long-lived (Berumen, 2005), and in the absence of habitat perturbations, exhibit little or no inter-annual variation in abundance (Halford et al., 2004). Moreover, only obligate coral feeding butterflyfishes...
(C. lunulatus, C. baronessa, C. trifascialis, C. plebeius, and C. rainfordi) declined in abundance, whereas facultative coral feeders (C. citrinellus or C. melannotus) and non-coral feeders (C. auriga and C. vagabundus) were ostensibly unaffected by reductions in coral cover at Trunk Reef. This finding is corroborated by several previous studies (e.g., Bouchon-Navaro et al., 1985; Williams, 1986), which suggested that observed declines in the abundance of corallivorous butterflyfishes were due to starvation and subsequent mortality, resulting from a lack of coral prey. Alternatively, declines in the abundance of coral-feeding butterflyfishes may have resulted from migration of fishes to different habitats (e.g., lagoonal or back-reef habitats) with higher cover of live corals. However, given the widespread impacts of climate induced coral bleaching (Berkelmans and Oliver, 1999), combined with reef-wide infestations of A. planci (Sweatman et al., 2004), the likelihood of finding more appropriate habitats would have been very low.

Despite extensive declines in the abundance of live coral, there was one obligate coral feeding butterflyfish, C. aureofasciatus that did not decline in abundance from May 2000 and March 2005. Chaetodon aureofasciatus is widely reported to feed on scleractinian corals, and has been categorised as an obligate hard-coral feeder (Pratchett, 2005). However, in addition to feeding on scleractinian corals, C. aureofasciatus does eat a range of non-coral prey, mostly zooanthids (Pratchett, 2005). Increased consumption of non-coral prey may have enabled C. aureofasciatus to persist following extensive depletion of its usual coral prey. Prey switching has been documented previously among generalist butterflyfishes (Pratchett et al., 2004), and is fundamental in delaying or mitigating effects of prey depletion. As such, generalist coral feeders (i.e., those species that can eat a wide range of different coral
species) were expected to be less susceptible to disturbances compared to more specialist species, as was shown for obligate coral-dwelling gobies (Munday, 2004). However, there was no evidence of this; *C. trifascialis*, which is the most specialist corallivorous butterflyfish (Pratchett, 2005), and *C. rainfordi*, which is an extreme generalist (Pratchett, 2005), were similarly affected by severe coral depletion at Trunk Reef. While moderate disturbances may have a disproportionate impact on specialist species (e.g., Munday, 2004), extensive depletion of live corals (across all taxa) appears to affect all coral-feeding butterflyfishes, irrespective of their dietary preferences. The only butterflyfishes that endured extensive coral depletion were those species capable of feeding on non-coral prey (i.e., facultative coral feeders and non-coral feeders).

While coral-feeding butterflyfishes are highly dependent on scleractinian corals, effects of coral depletion on the abundance of these fishes took several years to manifest. This suggests that mortality of butterflyfishes following depletion of prey resources is very slow, and may involve secondary processes. For example, in their weakened state, butterflyfishes may be increasingly susceptible to predation and disease. Long-term declines in the abundance of butterflyfishes may also arise due to recruitment failure. While facultative corallivores and non-coral feeders (e.g., *C. auriga*, and *C. melannotus*) settle in distinct shallow reef environments, obligate coral-feeding butterflyfishes (e.g., *C. trifascialis*) settle directly into hard corals in habitats with high cover of scleractinian corals (Harmelin-Vivien 1989; M. Pratchett, unpublished data). Therefore, extensive coral depletion may limit recruitment success of obligate corallivores, but not facultative corallivores and non-coral feeders. Alternatively, initial declines in the abundance of hard corals may have had limited
influence on the abundance of butterflyfishes, and it is only when coral cover drops below some critical level that butterflyfish populations can no longer be sustained (Cox, 1994). The apparent stability of the butterflyfish assemblage immediately after severe coral bleaching, in March 2002, suggests that there was still sufficient coral prey to sustain existing populations of hard-coral feeders. However, there were significant declines in the physiological condition of *C. lunulatus* apparent after initial declines in hard coral cover (Pratchett *et al.*, 2004), which may have affected their subsequent survivorship and/or reproductive output. As such, the dramatic declines in the abundance of coral-feeding butterflyfishes between March 2002 and March 2005 may have been a delayed response to the initial bleaching event. Further reductions in coral cover, due to infestations of *A. planci*, are also likely to have contributed to these declines.

Results of this study suggest that extensive coral bleaching, caused by severe coral bleaching and localised infestations on *A. planci*, led to significant declines in the abundance of butterflyfishes. Importantly however, butterflyfishes did not respond immediately to significant reductions in live coral cover, indicating a poor ability to provide early warning of changes in coral health (*cf.* Hourigan *et al.*, 1988; Crosby and Reese, 2005). Moreover, only obligate coral feeding butterflyfishes (*C. lunulatus*, *C. baronessa, C. trifascialis, C. plebeius*, and *C. rainfordi*) declined in abundance, whereas facultative coral feeders and non-coral feeders were ostensibly unaffected by reductions in coral cover. Further inter-specific differences in the responses of butterflyfishes (i.e., among coral-feeding species) were expected, due to differences in their specific feeding preferences and dietary specialisation. However, depletion of
hard corals was so extreme (down to 3.2% coral cover in March 2005) that all coral-feeding butterflyfishes virtually disappeared. Recovery of these butterflyfish populations will be very much dependent on recovery of coral assemblages, which is likely to take at least five years (Halford et al., 2004) and only if there are no other disturbance events in the meantime.

This research was funded by a JCU Program Grant. Field assistance was provided by P. Marshall and A. Kerr. The authors are grateful to N. Graham, G. Jones and N. Polunin who provided comments on earlier drafts of this manuscript.

References

Table I. Two factor ANOVA to test for variation in the abundance of butterflyfishes among years, and among sites within years. Tukey’s post-hoc test was used to assess significance of changes in the abundance of butterflyfishes within each of two distinct sampling periods. Significance was based on Bonferroni corrected p-values ($\alpha_{0.05} = 0.01$), “↓↑” indicate direction of change (NS $p>0.05$, *$p<0.05$, **$p<0.01$, ***$p<0.001$)

<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Obligate hard-coral feeders</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Chaetodon aureofasciatus</td>
<td>NS</td>
<td>NS</td>
<td>NS NS</td>
</tr>
<tr>
<td>Chaetodon baronessa</td>
<td>↓***</td>
<td>NS</td>
<td>↓* ↓***</td>
</tr>
<tr>
<td>Chaetodon lunulatus</td>
<td>↓***</td>
<td>NS</td>
<td>NS ↓***</td>
</tr>
<tr>
<td>Chaetodon plebeius</td>
<td>↓***</td>
<td>NS</td>
<td>NS ↓**</td>
</tr>
<tr>
<td>Chaetodon rainfordi</td>
<td>↓**</td>
<td>NS</td>
<td>NS ↓**</td>
</tr>
<tr>
<td>Chaetodon trifascialis</td>
<td>↓**</td>
<td>NS</td>
<td>NS ↓**</td>
</tr>
<tr>
<td>Facultative hard-coral feeders</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Chaetodon citrinellus</td>
<td>NS</td>
<td>NS</td>
<td>NS NS</td>
</tr>
<tr>
<td>Chaetodon melannotus</td>
<td>NS</td>
<td>NS</td>
<td>NS NS</td>
</tr>
<tr>
<td>Non-coral feeders</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Chaetodon auriga</td>
<td>NS</td>
<td>NS</td>
<td>NS NS</td>
</tr>
<tr>
<td>Chaetodon vagabundus</td>
<td>NS</td>
<td>NS</td>
<td>NS NS</td>
</tr>
</tbody>
</table>
Fig. 1. Mean ± S.E. percentage cover of scleractinian corals (■, n = 30 transects) and mean ± S.E. densities of butterflyfishes (○, n = 15 transects) at Trunk Reef in May 2000 (before the bleaching), March 2002 (during the bleaching), and in March 2005 (three years post-bleaching).

Fig. 2. Mean ± S.E. percentage cover of major coral genera in May 2000 (□, n = 30 transects), March 2002 (■, n = 30 transects), and in March 2005 (■, n = 30 transects). Less abundant genera (Acanthastrea, Astreopora, Cyphastrea, Favites, Gardineroseris, Goniopora, Leptastrea, Leptoseris, Lobophyllia, Montastrea, and Psammocora) were pooled together and considered as a single category (Other scleractinians).

Fig. 3. Mean ± S.E. densities of butterflyfishes in May 2000 (□, n = 15 transects), March 2002 (■, n = 15 transects), and in March 2005 (■, n = 15 transects). Species are ordered in decreasing abundance in May 2000.
Fig. 3

Butterflyfish species

<table>
<thead>
<tr>
<th>Species</th>
<th>No. butterflyfish per 200m²</th>
</tr>
</thead>
<tbody>
<tr>
<td>C. lunulatus</td>
<td>7</td>
</tr>
<tr>
<td>C. baronessa</td>
<td>3</td>
</tr>
<tr>
<td>C. trifascialis</td>
<td>2</td>
</tr>
<tr>
<td>C. plebeius</td>
<td>1</td>
</tr>
<tr>
<td>C. auerofasciatus</td>
<td>1</td>
</tr>
<tr>
<td>C. rainfordi</td>
<td>1</td>
</tr>
<tr>
<td>C. citrinellus</td>
<td>1</td>
</tr>
<tr>
<td>C. melannotus</td>
<td>1</td>
</tr>
<tr>
<td>C. auriga</td>
<td>1</td>
</tr>
<tr>
<td>C. vagabundus</td>
<td>1</td>
</tr>
</tbody>
</table>

Butterflyfish species

No. butterflyfish per 200m²
February 1st, 2005

Dr. John. F. Craig,
Editor for *Journal of Fish Biology*
Whiteside, Dunscore, Dumfries
DG2 0UU, Scotland

Dear Dr. Craig,

Please find enclosed my manuscript entitled “Declines in the abundance of *Chaetodon* butterflyfishes (Chaetodontidae) following extensive coral depletion” which has been revised in accordance with requirements for the journal.

Specific changes include:

i) Header removed, and footer reformatted to show only page number

ii) Line numbers included throughout the manuscript and figure captions

iii) Specific p-values (eg., p= 0.09) have been replaced with either p>0.05, p<0.05, P<0.01 or p<0.001

v) All paragraphs indented (except Abstract and first paragraph of the Introduction)

vi) All references to tables in roman numerals (eg., Table I not Table 1).

vii) Figure captions simplified following Bozec et al. 2005 J. Fish Biol. 66: 966-982, and now include keys to figures

viii) Legends removed from figures.

I hope this manuscript now meets requirements for publication in *Journal of Fish Biology*. Please advise of any further changes required.

Sincerely,

Dr. Morgan Pratchett

Post-doctoral fellow
ARC Centre of Excellence for Coral Reef Studies
James Cook University

Phone: +61 7 4781 5747
Fax: +61 7 4725 1570
Email: morgan.pratchett@jcu.edu.au