Gender-specific modulation of tumorigenesis by folic acid supply in the Apc ⁴⁺/Min mouse during early neonatal life

Jill A. McKay¹*, Elizabeth A. Williams² and John C. Mathers¹

¹Human Nutrition Research Centre, School of Clinical Medical Sciences, Newcastle University, NE2 4HH, UK
²Human Nutrition Unit, University of Sheffield, Royal Hallamshire Hospital, Sheffield S10 2JF, UK

(Received 28 March 2007 – Revised 12 July 2007 – Accepted 16 July 2007)

Epidemiological studies suggest an inverse association between folic acid intake and colorectal cancer risk. Conversely, conventional treatment of existing tumours includes the use of folate antagonists. This suggests that the level of exposure to folate and its timing in relation to stage of tumorigenesis may be critical in determining outcomes. We hypothesised that folic acid depletion in utero and during early neonatal life may affect tumorigenesis in offspring. To investigate this hypothesis, female C57Bl6/J mice were randomised to a folic acid adequate (2 mg folic acid/kg diet) or folic acid depleted diet (0·26 mg folic acid/kg diet) from mating with Apc⁺/+ sires and throughout pregnancy and lactation. At weaning the Apc⁺/+Min offspring were randomised to a folic acid adequate (2 mg folic acid/kg diet) or depleted (0·26 mg folic acid/kg diet) diet, creating four in utero/post-weaning dietary regimens. At 10 weeks post-weaning, mice were killed and the intestinal tumour number and size were recorded. Folic acid depletion during pregnancy and post-weaning reduced erythrocyte folate concentrations in offspring significantly. Folic acid depletion during pregnancy and lactation did not affect tumour multiplicity or size. However, female mice fed normal folic acid diets post-weaning had more, and larger, tumours when compared with depleted females and both depleted and adequate folic acid fed males. These data suggest that folate depletion post-weaning was protective against neoplasia in female Apc⁺/+Min mice and highlights the need for further investigation of the optimal timing and dose of folic acid supplementation with regard to colorectal cancer risk.

Folate: Intestinal tumours: Gender: In utero

Abbreviations: CRC, colorectal cancer; DMH, 1,2 dimethylhydrazine; RBC, erythrocyte; SI, small intestine.

* Corresponding author: Dr Jill A. McKay, fax +44 (0)191 2228943, email jill.mckay@ncl.ac.uk
azoxyymethane-treated rats, Leu et al.21 reported that a folate-free diet reduced the development of colonic aberrant crypt foci over 12 weeks and reduced tumour number in the small and large intestine over 26 weeks compared with rats fed 8 mg folic acid/kg diet22. In adult Apc \(^{+/Min}\) mice, which develop multiple intestinal neoplasms spontaneously, Song et al.23 reported a protective effect of folate against small intestinal tumours, which was dose-dependent. In contrast, Sibani et al.24 observed fewer tumours in Apc \(^{+/Min}\) mice fed a diet deficient in folate and choline. Given the key role of folate in one carbon metabolism and cell division, it is conceivable that extra folate could enhance the growth of in situ tumours. Indeed, in the Apc \(^{-/-}\)/Msh2 \(^{-/-}\) mouse, timing of folate supplementation was found to be critical to its effect upon tumorigenesis25. In mice given a folate-supplemented diet (8 mg folic acid/kg diet) from 3 weeks of age, intestinal and colonic adenomas were 2·7- and 2·8-fold lower upon tumorigenesis25. In mice given a folate-supplemented diet fed to dams to induce folic acid depletion during pregnancy and lactation, whilst the 0·26 mg folic acid/kg diet was used to induce depletion of folic acid status in weaned mice as evidenced by significantly reduced erythrocyte (RBC) folate concentration.

Two C57BL/6J (Black 6) female mice were mated with each Apc \(^{+/Min}\) male. Breeding mice were offered an experimental diet (6 g/d) containing either a normal folic acid (2 mg/kg) or depleted folic acid (0·4 mg/kg) concentration. Once females were observed to be pregnant (by presence of a vaginal plug and/or swollen abdomen) they were re-caged and the quantity of food offered was increased to 10 g/d. At 2 weeks post-partum, the diet was further increased to 20 g/d to ensure sufficient food supply for weaning pups and for the lactating female.

Sub-sets of pups and all dams were killed at weaning (mean 32 d post-partum). Blood was collected by cardiac puncture for RBC folate analysis and the intestines of the pups were weighed and measured. Following genotyping, the remaining offspring were re-caged (one to four animals per cage) and assigned at random to the normal (0·26 mg folic acid/kg) or depleted folic acid (0·4 mg/kg) concentration. This resulted in four dietary intervention groups of adult offspring: normal folic acid pre- and post-weaning (NN); depleted folic acid pre- and post-weaning (DD); normal folic acid pre- and depleted folic acid post-weaning (ND); depleted folic acid pre-weaning followed by normal folic acid post-weaning (DN). Body weights of animals were recorded weekly post-weaning. Folic acid depletion did not alter growth weights of animals compared with controls. After an average of 70 d on the post-weaning experimental diets, 148 mice (thirty-seven per treatment group) were killed for sample collection.

Genotyping

Pups were genotyped at a mean age of 29 d by a standard PCR procedure (using DNA extracted from a tail biopsy) followed by restriction digest25.

Sample collection and analysis of gut tumours

Animals were anaesthetised using gaseous isoflurane. Blood was collected by cardiac puncture into an EDTA collection tube and protected from light. Total body, liver, SI, colon and caecum weights were recorded and the lengths of the SI and colon were measured. The SI was cut into two equal sections, the proximal and the terminal SI. The SI sections, colon

Materials and methods

Animal housing, husbandry and diets

Mice were housed in the Comparative Biology Centre (Newcastle University) at a temperature of 20–22°C and with 12 h light and 12 h dark cycles. Fresh water was available ad libitum. Experimental diets were based on the AIN-93G and contained 0·26, 0·4 or 2 mg folic acid/kg diet. The 2 mg folic acid/kg diet was the control diet (containing the concentration of folic acid considered normal for rodents26) and the folic acid content was provided by the AIN93VX vitamin mix. The lower folic acid diets were prepared using a folic acid-free AIN93VX vitamin mix to which the appropriate amount of folic acid was added. The 0·4 mg folic acid/kg diet was fed to dams to induce folic acid depletion during pregnancy and lactation, whilst the 0·26 mg folic acid/kg diet was used to induce depletion of folic acid status in weaned mice as evidenced by significantly reduced erythrocyte (RBC) folate concentration.

Gender specific modulation of tumorigenesis

551
and caecum were opened longitudinally and washed with PBS. Tumour size and location were recorded by a study-blinded technician.

Erythrocyte folate analysis

RBC folate concentrations were measured in haemolysate by the automated ion capture assay using the IMX folate system (Abbott IMx; Abbott Laboratories) as described by Basten et al.36.

Statistical analysis

The effects of experimental diet were examined by ANOVA according to a 2 × 2 factorial design (maternal and weaning folate supply) with gender of mouse as a fixed effect factor.

Results

Effects of folic acid depletion on pregnancy outcome

Litter sizes of dams fed the depleted folic acid diet were reduced by 22 % (P=0.006) compared with their normal folic acid counterparts, but there was no effect of feeding the folic acid-deplete diet on survival of pups during lactation. With both diets there was a slight excess (59 %) of males and no difference in the proportion of offspring carrying the Min genotype from folic acid-depleted compared with folic acid-normal dams (55 and 49 % respectively).

Effects of pre- and post-weaning folic acid depletion upon growth and organ dimensions

At weaning, pups from folic acid-depleted mothers were approximately 7.5 % lighter (P=0.003) than controls but there were no significant (P>0.05) effects of maternal folic acid supply on intestinal organ weights or organ lengths of pups at weaning (data not shown).

After 70 d of feeding the experimental diets to the offspring, there was little evidence of any gross differences in body size or in intestinal organ dimensions (Table 1). The exception was colon length, which was significantly (P=0.03) greater in mice born to folic acid-depleted dams.

Effects of pre- and post-weaning folic acid depletion upon erythrocyte folate status of weaned and adult Apc+/Min offspring

At weaning, the offspring of the dams fed the low folic acid diet had significantly (P=0.011) lower RBC folate concentration than the offspring of dams fed the normal folic acid diet (Fig. 1(A)). However, maternal folic acid depletion had no significant effect upon RBC folate concentrations in adult offspring (Fig. 1(B)). As expected, RBC folate concentration was reduced significantly (P<0.001) in mice fed the depleted folic acid diet from weaning (Fig. 1(C)).

Effects of pre- and post-weaning folic acid depletion on tumour number and size in Apc+/Min mice

Tumour diameters ranged up to 10 mm with a mean of 1.8 mm and median 1.6 mm. On this basis, tumours 1 mm and under were classified as ‘small’ and those diameters over 1 mm being ‘large’. The majority of tumours were found in the distal SI, regardless of dietary treatment (Table 2). In addition, small tumours made up a higher proportion of the total tumours in the distal SI when compared with the proximal SI and the colon (Table 2). There was no evidence that maternal folic acid depletion had any effect on total number, anatomical distribution or size of intestinal tumours (Table 2). In contrast, feeding the low folic acid diet to the weaned offspring resulted in fewer total gut tumours, with effects being concentrated in the distal half of the SI, but these differences were not statistically significant (P>0.05) (Table 2).

Since smaller adenomatous polyps are less likely to develop into carcinomas in human subjects37, the effect of dietary interventions on the size distribution of intestinal tumours was investigated by calculating the percentage of small (≤1 mm in diameter) tumours. This showed clearly that there was a greater proportion of small tumours in the gut of animals weaned on to the low folic acid diet (P=0.028) with this reduction in tumour size being most apparent in the distal SI (P=0.023) (Table 2).

Female mice had nearly twice as many intestinal tumours as male mice (Fig. 2) due to significantly more SI tumours (P=0.041) with no difference in colonic tumours (P=0.322). Accordingly, gender was included as a fixed factor in the statistical analysis of the tumour data (Table 2). Overall tumour burden, calculated as the total diameter of all gut tumours, was also higher in females, (29.6 mm compared with 17.6 mm for males) (P=0.056).

Further inspection of the tumorigenesis data (Fig. 3) revealed significant (P<0.05) differences in the responses of male and female mice to altered folic acid supply post-weaning. In male mice, reduced folic acid intake from weaning had no effect on total tumour multiplicity, SI tumour numbers, tumour burden or percentage of small tumours (Fig. 3(A)–(D)). In contrast, the low folic acid diet suppressed total and SI tumour number and tumour burden in female mice compared with females given a normal folic acid diet (Fig. 3(A)–(C)), so that females fed the folic acid-restricted diet had similar tumour numbers to males. However, the proportion of small tumours in females increased to almost twice that seen in males when the low folic acid diet was offered from weaning (Fig. 3(D)).

Discussion

As expected, in the present study, dietary folic acid depletion decreased RBC folate in both dams and weaned offspring. However, adult offspring exposed to maternal folic acid depletion did not have reduced RBC folate status, indicating that early folic acid depletion is not detrimental to RBC folate status in later life. Note that RBC folate concentrations in this study were higher than values described by Bird et al.38 as being typical for mice and also higher than those reported by McDorman et al.39 for mice fed adequate (5 mg folic acid/kg diet) or depleted (0 mg folic acid/kg) diets. In part,
these differences are due to the significantly lower haematocrit values for Apc\(^{+/Min}\) than wild-type mice (data not shown).

Folic acid depletion during pregnancy affected pregnancy outcome by significantly lowering the mean number of pups per litter. This effect of reduced maternal folate supply has been seen previously in rodents\(^{26}\) and may be due to the

Table 1. Effect of maternal and post-weaning folic acid supply on body weight and organ dimensions of adult offspring†

<table>
<thead>
<tr>
<th>Dietary folic acid regimen</th>
<th>Maternal diet</th>
<th>Post-weaning diet</th>
<th>Maternal \times Post-weaning diet</th>
</tr>
</thead>
<tbody>
<tr>
<td>Normal</td>
<td>Normal</td>
<td>Normal</td>
<td>0.516 0.119 0.723 0.480 0.803 0.755 0.537 0.932 0.161</td>
</tr>
<tr>
<td>Depleted</td>
<td>Depleted</td>
<td>Depleted</td>
<td>0.544 0.052 0.073 0.003 0.020 0.047 0.024 0.235 0.065</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Maternal \times Post-weaning diet</th>
<th>Normal</th>
<th>Depleted</th>
<th>Normal</th>
<th>Depleted</th>
</tr>
</thead>
<tbody>
<tr>
<td>Normal \times Normal</td>
<td>0.003 0.136 0.771 0.404 0.030 0.052 0.778 0.803 0.065</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Depleted \times Normal</td>
<td>0.005 0.161 0.731 0.471 0.129 0.235 0.024 0.065 0.052</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Normal \times Depleted</td>
<td>0.066 0.235 0.771 0.404 0.309 0.524 0.235 0.065 0.052</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Depleted \times Depleted</td>
<td>0.015 0.052 0.771 0.404 0.030 0.052 0.778 0.803 0.065</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

- **n**, number of animals; SEM, standard error of the mean.
- **P, probability of effects**.
- **\times, interaction**.

Fig. 1. Effects of pre- and post-weaning folic acid diets upon mean erythrocyte (RBC) folate concentrations. Error bars represent 95% CI. (A) Mean RBC folate of weanling pups of dams fed normal and depleted folate diets, (n 8 for both diet groups; $^*P=0.011$); (B) mean RBC folate of adult offspring exposed to normal and depleted folate diets pre-weaning (n 28 and 24 respectively). Data for animals fed both normal and low folate diets from weaning have been pooled since there was no evidence for a maternal \times weaning diet interaction; (C) mean RBC folate of adult offspring fed normal and depleted folate diets post-weaning. (n 25 and 27 respectively; $^*P<0.001$). Data for animals from dams fed both normal and low folate diets have been pooled since there was no evidence for a maternal \times weaning diet interaction. For details of diets and procedures, see Materials and methods.
lack of folate required for DNA synthesis and therefore restricting cell division. Folate deficiency during pregnancy can cause fetal death and resorption, depending upon severity and length of the nutritional insult. For example, mice given a folate-depleted diet and the antibiotic succinyl sulfathiazole, which reduces synthesis of folate by gut bacteria, from 4 weeks prior to mating had an increased incidence of resorptions at gestation days 11/12, 13–16 and 18 compared with mice given normal folate diets with and without succinyl sulfathiazole. During the present study, fetal resorption was not investigated but is a possible mechanism for the reduced litter size with folic acid depletion. Although litter size was reduced by folic acid depletion during pregnancy, there was no preference for either gender or genotype of the resultant litters from dams fed folate-depleted diets. In a recent study, maternal folate status was positively associated with infant birth weight in human subjects. Maternal folic acid depletion had no significant effect upon body weight or organ weights or lengths in either dams or offspring killed at weaning, but it led to increased colon weight and length in adult mice. It has been hypothesised that nutrient deficiencies during development prepare the fetus for future harsh environments in which it may be subjected to further nutrient depletion. Indeed, maternal folate status during pregnancy has been shown to restrict growth of the rat SI, ovine pancreas, and human kidney. It is possible that maternal folate deficiency during pregnancy may have similar effects in mice. However, it is not clear whether maternal folate status affects fetal growth during pregnancy. Furthermore, the effects of maternal folate status on maternal weight and weight of offspring at weaning are not well understood. It has been suggested that maternal folate status may affect fetal growth and development by influencing the timing and duration of nutrient deficiencies during pregnancy. However, the exact mechanisms by which maternal folate status affects fetal growth and development are not well understood. It is possible that maternal folate status affects fetal growth and development by influencing the timing and duration of nutrient deficiencies during pregnancy. However, the exact mechanisms by which maternal folate status affects fetal growth and development are not well understood.

Table 2.
Effects of maternal and post-weaning folic acid supply on the number and size of gut tumours in adult ApcMin/þ offspring

<table>
<thead>
<tr>
<th>Maternal diet</th>
<th>Dietary folic acid regimen</th>
<th>Post-weaning diet</th>
<th>Probability of effects</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Normal (NN)</td>
<td>Depleted (ND)</td>
<td>Normal (DN)</td>
</tr>
<tr>
<td>Maternal diet</td>
<td>Normal (N)</td>
<td>Post-weaning diet</td>
<td>Maternal x Post-weaning diet</td>
</tr>
<tr>
<td>n</td>
<td>Total gut tumours</td>
<td>Proximal SI tumours</td>
<td>Distal SI tumours</td>
</tr>
<tr>
<td>37</td>
<td>12·2</td>
<td>2·5</td>
<td>9·4</td>
</tr>
<tr>
<td>37</td>
<td>8·5</td>
<td>30</td>
<td>4·8</td>
</tr>
<tr>
<td>37</td>
<td>14</td>
<td>3·4</td>
<td>10·3</td>
</tr>
<tr>
<td>37</td>
<td>9·6</td>
<td>2·1</td>
<td>7·3</td>
</tr>
</tbody>
</table>

*P<0.05.
†Small tumours were defined as tumours ≤1 mm in diameter.
‡Tumour burden was calculated as the sum of tumour diameters.
§For details of diets and procedures, see Materials and methods.
SI, small intestine.

Fig. 2. Intestinal tumour multiplicity and tumour burden. Male, male tumour number; Female, female tumour number. *P<0.05. For details of diets and procedures, see Materials and methods.
growth of gut organs may be pre-programmed due to the original developmental constraints to which the fetus was subjected. Although organ growth was altered with folic acid depletion in utero, overall growth (measured by body mass) of mice was not affected by folic acid depletion in utero and/or post-weaning.

As observed previously in Apc+/Min mice, there were more tumours in the terminal SI when compared with the proximal SI and the colon. There were no significant effects of maternal folic acid supply on tumour number, incidence or size in adult Apc+/Min mice, indicating that folic acid depletion during in utero development had no effect on tumour initiation or tumour growth in these animals. This may be because the level of folic acid depletion may not have been sufficiently severe to impact upon tumorigenesis in the offspring and perhaps further dietary restriction of another methyl donor may have altered tumorigenesis in these mice. In the present study, birth weight was not measured and although offspring from folate-depleted dams tended to be lighter at weaning this difference was not statistically significant (P=0.093). It is not known whether the pups from folate-depleted dams experienced catch-up growth post-partum nor do we have any information on the effect, if any, of such catch-up growth on tumour development.

Female mice had a significantly (P=0.047) higher number of total tumours compared with males in the present study. Previous studies in Apc+/Min mice have observed differences in SI tumour number between gender. Steffensen et al. reported that male mice had 18% fewer tumours than females, whereas Paulsen et al. reported that males had 50% more tumours than females. However, we also observed a gender x post-weaning diet interaction for total tumour burden, in which normal folic acid females had a larger tumour burden than depleted females and both normal and folic acid-depleted males. These data indicate that a depletion of folic acid in these female mice was protective against tumorigenesis. Under the conditions of the current study, normal folic acid supply appears to be detrimental in respect of intestinal tumorigenesis in females, but not males. Several other studies have also indicated that gender can influence the efficacy of various interventions on intestinal tumorigenesis in Apc+/Min mice. For example, a rye bran-containing diet increased SI tumour number in female, but not in male Apc+/Min mice, and the addition of a vegetable–fruit mix to a low fat diet enhanced intestinal polyp multiplicity significantly in female Apc+/Min mice only. Treadmill running reduced both intestinal polyp number and size in male but not in female mice. This evidence indicates that gender is an important factor when investigating effects of environmental factors upon tumorigenesis in the Apc+/Min mouse model.

Two questions arise from the outcomes observed in this study: i) why were there more tumours in female mice compared with males? ii) why did females, but not males, respond to folic acid depletion? Gender-related hormones may have been one factor influencing the differences in tumour number between gender in this study. Indeed, ovariectomy in female Apc+/Min mice has been observed to increase

Fig. 3. Effects of gender and post-weaning folic acid supply on tumorigenesis in adult Apc+/Min offspring (–, male; –, female). (A) Total tumours (P=0.077 for gender x diet interaction; (B) small intestine tumour number (P=0.075 for gender x diet interaction; (C) tumour burden (P=0.028 for gender x diet interaction); (D) % of total small tumours (P=0.047 for gender x diet interaction). For details of diets and procedures, see Materials and methods.
intestinal tumour number \(^{55,56}\) and subsequent treatment with 17β-oestradiol and coumestrol reduced tumour number similar to that found in non-ovariectomised control mice, indicating that female sex hormones can affect tumorigenesis in this model. However, this does not explain our findings. In contrast with Weyant et al.’s study \(^{35}\), where oestrogen conferred protection against more aggressive tumorigenesis in females, we found enhanced tumorigenesis in intact females compared with males. This apparent gender effect and the discordant findings between studies require further investigation.

As summarised in a recent review by Kim \(^{57}\), inconsistent findings on effects of altering dietary folate supply on intestinal tumorigenesis have been reported between different studies. With higher intakes of folic acid within the physiological range, i.e. 8 mg/kg diet, decreased incidence of microscopic and macroscopic neoplasms was observed in DMH rats \(^{27,28}\). However, azoxymethane-treated rats showed increased incidence of colonic aberrant crypt foci and tumours of the large and SI when fed 8 compared with 0 mg folic acid/ kg diet \(^{21,22}\). Two studies used pharmacological concentrations of folic acid and found that 40 mg folic acid/kg diet increased tumorigenesis by 40% compared with controls in DMH-treated rats \(^{28}\), whereas increasing concentrations of folate up to 20 mg/kg in Apc \(^{+/-}\) Min mice led to a dose-dependent linear decrease in ileal adenoma and aberrant crypt foci \(^{23}\). It has been hypothesised that timing of folate depletion/supplementation may be critical in determining the effect on tumorigenesis. Song et al. \(^{25}\) investigated the effects of folate depletion in Apc \(^{+/-}\) Msh2 \(^{-/-}\) mice from both 3 and 6 weeks of age. Mice depleted from 3 weeks had more tumours compared with folate-supplemented animals, but folate depletion from 6 weeks of age reduced tumour number. Since tumour initiation has occurred by 6 (but not 3) weeks of age \(^{25}\), this observation suggests that folate supplementation may be protective prior to tumour initiation but that folate depletion confers greater protection once tumour growth has started. Indeed in the present study, reducing folic acid supply from 4–5 weeks of age reduced tumorigenesis by lowering SI tumour numbers and increasing the mean percentage of small tumours in both the SI and colon compared with controls in female mice. The present study therefore supports the hypothesis that folic acid depletion post-tumour initiation (4–5 weeks of age) slows tumour progression, but did not indicate any beneficial or detrimental effect on tumorigenesis of folic acid depletion prior to tumour initiation (in utero and until 4–5 weeks of age).

The present study provides evidence that reduced folic acid supply may be protective against tumour progression in female Apc \(^{+/-}\) Min mice when imposed from 4–5 weeks of age. This is probably due to reduced availability of folic acid for DNA synthesis and cell division, thus slowing tumour growth. Indeed, in Apc \(^{+/-}\) Min mice given the chemotherapeutic drug, 5-fluorouracil, which acts upon thymidylate synthase causing a reduction in the conversion of dUMP to dTMP, folic acid depletion enhanced drug efficacy \(^{58}\). Further, folate depletion inhibited tumour recovery once the drug was withdrawn and, 6 weeks after withdrawal, folate-depleted mice had lower tumour numbers compared with age-matched controls \(^{58}\). This was possibly due to the continued depletion of nucleotides slowing tumour cell proliferation.

To our knowledge, this is the first study to test the hypothesis that folic acid depletion in utero and during lactation could influence tumorigenesis in later life. Although our dietary protocol was successful in reducing folate status whilst ensuring the production of viable offspring with no detriment in postnatal growth, there was no evidence that such maternal folic acid depletion affected tumorigenesis in the offspring. In contrast, folic acid depletion from weaning (4–5 weeks of age) may be protective against tumour development in female, but not in male, Apc \(^{+/-}\) Min mice. These observations support the hypothesis that a critical period of vulnerability to folic acid supply occurs after tumour initiation, especially in females. Further studies will be needed to confirm or refute this gender-specific effect of altered folic acid supply on intestinal tumour development and, if confirmed, to investigate the mechanism responsible for the greater sensitivity of females to this nutritional manipulation.

In summary, the present study shows that: i) there was no effect of maternal folic acid supply (within the range tested) on intestinal tumorigenesis; ii) reduced dietary folic acid supply from weaning inhibited the growth of neoplastic lesions in female Apc \(^{+/-}\) Min mice. The implications of these findings for the role of folic acid supply in human tumorigenesis remain to be established. Fortification (both voluntary and mandatory) of foods with folic acid is common in North America and in the UK. Whilst such fortification is likely to be beneficial for women of reproductive age in lowering the risk of neural tube defects, the implications for other population groups remain less certain. The important observation by Cole et al. \(^{59}\) that those with a recent history of colorectal adenomas had a higher risk of having three or more adenomas and of non-colorectal cancer 3–5 years after being randomised to 1 mg folic acid/d suggests the need for further research to ascertain whether raised folic acid intake may increase the risk of colorectal neoplasia.

Acknowledgements

We thank Adele Kitching of the Comparative Biology Centre, Newcastle University for care of the animals used in this study and Kevin Waltham for assistance with tissue sampling. We also thank Professor Hilary Powers, University of Sheffield for use of the IMX folate analysis system. This project was funded by a BBSRC studentship (01/A1/D/17 951) held by J. A. M. with additional support from a World Cancer Research Fund award (2001/37).

References

