Toggle Main Menu Toggle Search

Open Access padlockePrints

Laser sintering of blended Al-Si powders

Lookup NU author(s): Professor Kenneth Dalgarno

Downloads


Abstract

Purpose – The purpose of this paper is to study the effects of particle size distribution, component ratio, particle packing arrangement, and chemical constitution on the laser sintering behaviour of blended hypoeutectic Al-Si powders. Design/methodology/approach – A range of bimodal and trimodal powder blends were created through mixing Al-12Si and pure aluminium powder. The powder blends were then processed using selective laser sintering to investigate the effect of alloy composition, powder particle size and bed density on densification and microstructural evolution. Findings – For all of the powder blends the sintered density increases with the specific laser energy input until a saturation level is reached. Beyond this saturation level no further increase in sintered density is obtained for an increase in specific laser energy input. However, the peak density achieved for a given blend varied significantly with the chemical constitution of the alloy, peaking at approximately 9 wt% Si. The tap density of the raw powder mixture (assumed to be representative of bed density) was also a significant factor. Originality/value: - This is the first study to consider the usefulness of silicon as an alloying element in aluminium alloys to be processed by selective laser sintering. In addition the paper outlines the key factors in optimising processing parameters and powder properties in order to attain sound sinterability for direct laser sintered parts.


Publication metadata

Author(s): Olakanmi EO, Dalgarno KW, Cochrane RF

Publication type: Article

Publication status: Published

Journal: Rapid Prototyping Journal

Year: 2012

Volume: 18

Issue: 2

Pages: 109-119

Date deposited: 16/03/2012

ISSN (print): 1355-2546

ISSN (electronic): 1758-7670

Publisher: Emerald Group Publishing Ltd.

URL: http://dx.doi.org/10.1108/13552541211212096

DOI: 10.1108/13552541211212096


Altmetrics

Altmetrics provided by Altmetric


Share