Toggle Main Menu Toggle Search

ePrints

Clusters of secretagogin-expressing neurons in the aged human olfactory tract lack terminal differentiation

Lookup NU author(s): Professor Johannes Attems, Dr Laura Jardine, Shane McParland

Downloads

Full text for this publication is not currently held within this repository. Alternative links are provided below where available.


Abstract

Expanding the repertoire of molecularly diverse neurons in the human nervous system is paramount to characterizing the neuronal networks that underpin sensory processing. Defining neuronal identities is particularly timely in the human olfactory system, whose structural differences from nonprimate macrosmatic species have recently gained momentum. Here, we identify clusters of bipolar neurons in a previously unknown outer "shell" domain of the human olfactory tract, which express secretagogin, a cytosolic Ca(2+) binding protein. These "shell" neurons are wired into the olfactory circuitry because they can receive mixed synaptic inputs. Unexpectedly, secretagogin is often coexpressed with polysialylated-neural cell adhesion molecule, beta-III-tubulin, and calretinin, suggesting that these neurons represent a cell pool that might have escaped terminal differentiation into the olfactory circuitry. We hypothesized that secretagogin-containing "shell" cells may be eliminated from the olfactory axis under neurodegenerative conditions. Indeed, the density, but not the morphological or neurochemical integrity, of secretagogin-positive neurons selectively decreases in the olfactory tract in Alzheimer's disease. In conclusion, secretagogin identifies a previously undescribed cell pool whose cytoarchitectonic arrangements and synaptic connectivity are poised to modulate olfactory processing in humans.


Publication metadata

Author(s): Attems J, Alpar A, Spence L, McParland S, Heikenwalder M, Uhlén M, Tanila H, Hökfelt TG, Harkany T

Publication type: Article

Journal: Proceedings of the National Academy of Sciences

Year: 2012

Volume: 109

Issue: 16

Pages: 6259-6264

Print publication date: 02/04/2012

ISSN (print): 0027-8424

ISSN (electronic): 1091-6490

Publisher: National Academy of Sciences

URL: http://dx.doi.org/10.1073/pnas.1203843109

DOI: 10.1073/pnas.1203843109


Altmetrics

Altmetrics provided by Altmetric


Actions

    Link to this publication


Share