Toggle Main Menu Toggle Search

Open Access padlockePrints

Effect of electrochemical structuring of Ti6Al4V on osteoblast behaviour in vitro

Lookup NU author(s): Dr Mark Birch, Samaneh Nouraei, Siti Ngalim, Professor Andrew McCaskie, Professor Sudipta Roy

Downloads

Full text for this publication is not currently held within this repository. Alternative links are provided below where available.


Abstract

Topography and surface chemistry have a profound effect on the way in which cells interact with an implant, which in turn impacts on clinical use and performance. In this paper we examine an electrochemical polishing approach in H2SO4/methanol that can be applied to the widely used orthopaedic/dentistry implant material, Ti6Al4V, to produce structured surfaces. The surface roughness, as characterized by R-a, was found to be dependent on the time of electropolishing but not on the voltage parameters used here. The surface chemistry, however, was dependent on the applied electrochemical potential. It was found that the chemical composition of the surface layer was modified during the electrochemical process, and at high potentials (9.0 V) a pure TiO2 layer of at least 10 nm was created on top of the bulk alloy. Characterization of these surfaces with rat cells from the osteoblast lineage provided further evidence of contact guidance by microscale topography with morphology analysis correlating with surface roughness (R-a 300-550 nm). Formation of a bone-like matrix after long-term culture on these surfaces was not strongly dependent upon R-a values but followed the voltage parameter. These findings suggest that the surfaces created by treatment at higher voltages (9.0 V) produced a nanoscale layer of pure TiO2 on the Ti6Al4V surface that influenced the programme of cellular differentiation culminating in osteogenesis.


Publication metadata

Author(s): Birch MA, Johnson-Lynn S, Nouraei S, Wu QB, Ngalim S, Lu WJ, Watchorn C, Yang TY, McCaskie AW, Roy S

Publication type: Article

Publication status: Published

Journal: Biomedical Materials

Year: 2012

Volume: 7

Issue: 3

Print publication date: 01/06/2012

ISSN (print): 1748-6041

ISSN (electronic): 1748-605X

Publisher: Institute of Physics Publishing Ltd.

URL: http://dx.doi.org/10.1088/1748-6041/7/3/035016

DOI: 10.1088/1748-6041/7/3/035016


Altmetrics

Altmetrics provided by Altmetric


Share